Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Quantum manipulation: Filling the gap between quantum and classical world

This graphic shows the relationships between fundamental quantum mechanics and the technology of the classical world.

Credit: ©Science China Press
This graphic shows the relationships between fundamental quantum mechanics and the technology of the classical world.

Credit: ©Science China Press

Abstract:
Quantum superposition is a fundamental and also intriguing property of the quantum world. Because of superposition, a quantum system can be in two different states simultaneously, like a cat that can be both "dead" and "alive" at the same time. However, this anti-intuitive phenomenon cannot be observed directly, because whenever a classical measuring tool touches a quantum system, it immediately collapse into a classical state. On the other hand, quantum superposition is also the core of quantum computer's enormous computational power. A quantum computer can easily break the widely used RSA (Rivest, Shamir and Adleman) security system with Shor's algorithm. But for now, quantum computation still suffers from the decoherence induced by environment. Obviously, the key to manipulate a quantum system is to make it stay coherent as long as possible, to achieve this, one need to isolate the system from its environment. "For ground-breaking experimental methods that enable measuring and manipulation of individual quantum systems", Serge Haroche and David Wineland won the 2012 Nobel Prize in Physics.

Quantum manipulation: Filling the gap between quantum and classical world

Beijing, China | Posted on April 14th, 2014

This review begins by introducing the interesting property of quantum superposition, explaining its physical meaning, potential applications and main obstacles ahead. Then the author goes on to introduce the work of the two 2012 Nobel Prize Laureates - Serge Haroche and David Wineland. Instead of manipulating a neutral atom or a photon, Wineland and his team focused on controlling a charged atom, the ion, in an electromagnetic well. In order to break the limit of Doppler cooling, a new cooling technique - Side-Band cooling was used to reach extreme low temperature. The well cooled ions made an ideal platform for building optical clock and quantum computer. Since 2001, Wineland and his team had realized several optical clocks with very high precision. They had also realized basic quantum logic gate in ion trap and demonstrated the scalability of ion system, proving their system is promising for practical quantum computation. This article covers the above topics and gives detailed review.

In the fourth section, the author introduces the work of Haroche and his collaborators. Haroche et al managed to build a high-Q microwave cavity with superconducting materials and cooled it down to superconducting phase. According to Meissner effect, photons in the cavity cannot penetrate the superconducting mirror and will be trapped inside, thus isolate the photons from its environment. Since the cavity has extremely high-Q, the Rydberg atoms inside the cavity are strongly correlated to the photon field, which makes a perfect platform for testing the fundamental principles of quantum mechanics. With the aid of quantum non-demolition measurement, quantum processes can be observed without destroying the state. Using this platform, Haroche et al had directly observed decoherence, quantum jump and several other quantum information processes.

Finally, the review introduces recent developments and further applications of quantum manipulation, and then ends with a discussion of the relationship between quantum and classical world. With advanced quantum manipulation techniques, people are able to investigate fundamental quantum mechanics. In return, a better understanding of quantum mechanics makes it possible to develop new technologies that will change our classical world.

####

For more information, please click here

Contacts:
Guang-Can Guo

Copyright © Science China Press

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Publication:

Related News Press

Physics

New method allows for greater variation in band gap tunability: The method can change a material's electronic band gap by up to 200 percent January 31st, 2015

News and information

New method allows for greater variation in band gap tunability: The method can change a material's electronic band gap by up to 200 percent January 31st, 2015

Evidence mounts for quantum criticality theory: Findings bolster theory that quantum fluctuations drive strange electronic phenomena January 30th, 2015

Everything You Need To Know About Nanopesticides January 30th, 2015

DNA nanoswitches reveal how life's molecules connect: An accessible new way to study molecular interactions could lower cost and time associated with discovering new drugs January 30th, 2015

Quantum Computing

Nanoscale Mirrored Cavities Amplify, Connect Quantum Memories: Advance could lead to quantum computing and the secure transfer of information over long-distance fiber optic networks January 28th, 2015

New pathway to valleytronics January 27th, 2015

Entanglement on a chip: Breakthrough promises secure communications and faster computers January 27th, 2015

Graphene brings quantum effects to electronic circuits January 22nd, 2015

Discoveries

New method allows for greater variation in band gap tunability: The method can change a material's electronic band gap by up to 200 percent January 31st, 2015

Evidence mounts for quantum criticality theory: Findings bolster theory that quantum fluctuations drive strange electronic phenomena January 30th, 2015

Everything You Need To Know About Nanopesticides January 30th, 2015

DNA nanoswitches reveal how life's molecules connect: An accessible new way to study molecular interactions could lower cost and time associated with discovering new drugs January 30th, 2015

Announcements

New method allows for greater variation in band gap tunability: The method can change a material's electronic band gap by up to 200 percent January 31st, 2015

Evidence mounts for quantum criticality theory: Findings bolster theory that quantum fluctuations drive strange electronic phenomena January 30th, 2015

Everything You Need To Know About Nanopesticides January 30th, 2015

DNA nanoswitches reveal how life's molecules connect: An accessible new way to study molecular interactions could lower cost and time associated with discovering new drugs January 30th, 2015

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

New method allows for greater variation in band gap tunability: The method can change a material's electronic band gap by up to 200 percent January 31st, 2015

DNA nanoswitches reveal how life's molecules connect: An accessible new way to study molecular interactions could lower cost and time associated with discovering new drugs January 30th, 2015

Crystal light: New light-converting materials point to cheaper, more efficient solar power: University of Toronto engineers study first single crystal perovskites for new solar cell and LED applications January 30th, 2015

Iranian Scientists Use MOFs to Eliminate Dye Pollutants January 29th, 2015

Quantum nanoscience

New method allows for greater variation in band gap tunability: The method can change a material's electronic band gap by up to 200 percent January 31st, 2015

Evidence mounts for quantum criticality theory: Findings bolster theory that quantum fluctuations drive strange electronic phenomena January 30th, 2015

Creating new materials with quantum effects for electronics January 29th, 2015

Nanoscale Mirrored Cavities Amplify, Connect Quantum Memories: Advance could lead to quantum computing and the secure transfer of information over long-distance fiber optic networks January 28th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE