Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Quantum manipulation: Filling the gap between quantum and classical world

This graphic shows the relationships between fundamental quantum mechanics and the technology of the classical world.

Credit: ©Science China Press
This graphic shows the relationships between fundamental quantum mechanics and the technology of the classical world.

Credit: ©Science China Press

Abstract:
Quantum superposition is a fundamental and also intriguing property of the quantum world. Because of superposition, a quantum system can be in two different states simultaneously, like a cat that can be both "dead" and "alive" at the same time. However, this anti-intuitive phenomenon cannot be observed directly, because whenever a classical measuring tool touches a quantum system, it immediately collapse into a classical state. On the other hand, quantum superposition is also the core of quantum computer's enormous computational power. A quantum computer can easily break the widely used RSA (Rivest, Shamir and Adleman) security system with Shor's algorithm. But for now, quantum computation still suffers from the decoherence induced by environment. Obviously, the key to manipulate a quantum system is to make it stay coherent as long as possible, to achieve this, one need to isolate the system from its environment. "For ground-breaking experimental methods that enable measuring and manipulation of individual quantum systems", Serge Haroche and David Wineland won the 2012 Nobel Prize in Physics.

Quantum manipulation: Filling the gap between quantum and classical world

Beijing, China | Posted on April 14th, 2014

This review begins by introducing the interesting property of quantum superposition, explaining its physical meaning, potential applications and main obstacles ahead. Then the author goes on to introduce the work of the two 2012 Nobel Prize Laureates - Serge Haroche and David Wineland. Instead of manipulating a neutral atom or a photon, Wineland and his team focused on controlling a charged atom, the ion, in an electromagnetic well. In order to break the limit of Doppler cooling, a new cooling technique - Side-Band cooling was used to reach extreme low temperature. The well cooled ions made an ideal platform for building optical clock and quantum computer. Since 2001, Wineland and his team had realized several optical clocks with very high precision. They had also realized basic quantum logic gate in ion trap and demonstrated the scalability of ion system, proving their system is promising for practical quantum computation. This article covers the above topics and gives detailed review.

In the fourth section, the author introduces the work of Haroche and his collaborators. Haroche et al managed to build a high-Q microwave cavity with superconducting materials and cooled it down to superconducting phase. According to Meissner effect, photons in the cavity cannot penetrate the superconducting mirror and will be trapped inside, thus isolate the photons from its environment. Since the cavity has extremely high-Q, the Rydberg atoms inside the cavity are strongly correlated to the photon field, which makes a perfect platform for testing the fundamental principles of quantum mechanics. With the aid of quantum non-demolition measurement, quantum processes can be observed without destroying the state. Using this platform, Haroche et al had directly observed decoherence, quantum jump and several other quantum information processes.

Finally, the review introduces recent developments and further applications of quantum manipulation, and then ends with a discussion of the relationship between quantum and classical world. With advanced quantum manipulation techniques, people are able to investigate fundamental quantum mechanics. In return, a better understanding of quantum mechanics makes it possible to develop new technologies that will change our classical world.

####

For more information, please click here

Contacts:
Guang-Can Guo

Copyright © Science China Press

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Publication:

Related News Press

News and information

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Instant-start computers possible with new breakthrough December 19th, 2014

Aculon Hires New Business Development Director December 19th, 2014

Iranian Scientists Use Nanotechnology to Increase Power, Energy of Supercapacitors December 18th, 2014

Physics

SUNY Poly NanoCollege Faculty Member Selected as American Physical Society Fellow: SUNY Poly Associate Professor of Nanoscience Dr. Vincent LaBella Recognized for Significant Technological Innovations that Enable Interactive Learning December 17th, 2014

Fraud-proof credit card possible because of quantum physics December 16th, 2014

Nanoscale resistors for quantum devices: The electrical characteristics of new thin-film chromium oxide resistors that can be tuned by controlling the oxygen content detailed in the 'Journal of Applied Physics' December 9th, 2014

Unusual Electronic State Found in New Class of Unconventional Superconductors: Finding gives scientists a new group of materials to explore to unlock secrets of some materials' ability to carry current with no energy loss December 8th, 2014

Quantum Computing

Nanoscale resistors for quantum devices: The electrical characteristics of new thin-film chromium oxide resistors that can be tuned by controlling the oxygen content detailed in the 'Journal of Applied Physics' December 9th, 2014

Electron pairs on demand: Controlled emission and spatial splitting of electron pairs demonstrated December 4th, 2014

Graphene layer reads optical information from nanodiamonds electronically: Possible read head for quantum computers December 1st, 2014

University of Minnesota engineers make sound loud enough to bend light on a computer chip: Device could improve wireless communications systems November 28th, 2014

Discoveries

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Instant-start computers possible with new breakthrough December 19th, 2014

Creation of 'Rocker' protein opens way for new smart molecules in medicine, other fields December 18th, 2014

Iranian Scientists Use Nanotechnology to Increase Power, Energy of Supercapacitors December 18th, 2014

Announcements

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Instant-start computers possible with new breakthrough December 19th, 2014

Aculon Hires New Business Development Director December 19th, 2014

Iranian Scientists Use Nanotechnology to Increase Power, Energy of Supercapacitors December 18th, 2014

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Instant-start computers possible with new breakthrough December 19th, 2014

How does enzymatic pretreatment affect the nanostructure and reaction space of lignocellulosic biomass? December 18th, 2014

Iranian Scientists Use Nanotechnology to Increase Power, Energy of Supercapacitors December 18th, 2014

Quantum nanoscience

Fraud-proof credit card possible because of quantum physics December 16th, 2014

Nanoscale resistors for quantum devices: The electrical characteristics of new thin-film chromium oxide resistors that can be tuned by controlling the oxygen content detailed in the 'Journal of Applied Physics' December 9th, 2014

High photosensitivity 2D-few-layered molybdenum diselenide phototransistors December 8th, 2014

Electron pairs on demand: Controlled emission and spatial splitting of electron pairs demonstrated December 4th, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE