Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > In latest generation of tiny biosensors, size isn't everything: UCLA researchers overturn conventional wisdom on nanowire-based diagnostic devices

Abstract:
When it comes to nanomedicine, smaller is — surprisingly — not always better.

UCLA Henry Samueli School of Engineering and Applied Science researchers have determined that the diminutive size of nanowire-based biosensors — which healthcare workers use to detect proteins that mark the onset of heart failure, cancer and other health risks — is not what makes them more sensitive than other diagnostic devices. Rather, what matters most is the interplay between the charged ions in the biological sample being tested and the charged proteins captured on the sensors' surface.

In latest generation of tiny biosensors, size isn't everything: UCLA researchers overturn conventional wisdom on nanowire-based diagnostic devices

Los Angeles, CA | Posted on April 11th, 2014

The finding counters years of conventional wisdom that a biosensor can be made more sensitive simply by reducing the diameter of the nanowires that make up the device. This assumption has driven hundreds of costly research-and-development efforts in the field of nanomedicine — in which tiny materials and devices are used to detect, diagnose and treat disease.

The research suggests new directions for designing biosensors to improve their sensitivity and make them more practical for doctors — and, eventually, patients themselves — to use.

"This is the first time the understanding of why nanowire biosensing works has been challenged," said Chi On Chui, an associate professor of electrical engineering and bioengineering at UCLA whose lab performed the research. "The advantage is not from the fact that the wires are nanoscale, but rather how their geometry reduces the ability of the ions to inhibit protein detection. This research could be a step toward developing sophisticated, cost-efficient and portable devices to accurately detect a range of illnesses."

The research was published March 25 in the Proceedings of the National Academy of Sciences.

Nanowire biosensors are, in essence, electronic transistors with a diameter smaller than the width of a single red blood cell. When they are exposed to a sample of blood or another bodily fluid, the specific charged proteins being tested for are captured on the nanowires' surfaces. The charge of the captured proteins changes the rate of electric current flowing through the nanowire transistor. By monitoring the electrical current, researchers can quantify the concentration of proteins in the sample, which can give them an indication of heart health, diabetes and a number of other medical conditions.

A challenge to the practical use of the technology is that in addition to the charged proteins, many physiological fluids contain a large concentration of charged ions, such as sodium, potassium and chloride. These ions surround the proteins and mask the protein charge, which prevents the sensor from detecting the proteins.

Researchers in labs can circumvent this problem. But doctors performing tests on their patients or patients monitoring their own health at home cannot do so without the assistance of a technician. This has hampered the adoption of the technology.

The UCLA research advances understanding of nanowire efficiency in several ways. First, it proves that the small size of the nanowires is not inherently responsible for the fact that they outperform their planar counterparts.

Second, it demonstrates that the improvement in performance results from the fact that ionic screening is reduced in tight spaces — such as the corners between a nanowire and the base it sits on — because ions have difficulty approaching proteins there. This corner effect exists in most biosensing structures, whether they are nanoscale or not; but the effect becomes more important at the nanoscale.

The research also shows that in general, devices with concave surfaces work more efficiently than those with convex surfaces.

"My hope is that researchers can use this understanding to do two things," said Kaveh Shoorideh, the UCLA Engineering graduate student who is first author of the research. "First, to make sensitive biosensors without resorting to expensive nanowires, and second, to come up with ways to reduce ionic screening without requiring a technician."

The research was supported by the National Science Foundation.

####

About UCLA
The UCLA Henry Samueli School of Engineering and Applied Science, established in 1945, offers 28 academic and professional degree programs and has an enrollment of more than 5,000 students. The school's distinguished faculty are leading research to address many of the critical challenges of the 21st century, including renewable energy, clean water, health care, wireless sensing and networking, and cyber-security. Ranked among the top 10 engineering schools at public universities nationwide, the school is home to eight multimillion-dollar interdisciplinary research centers in wireless sensor systems, wireless health, nanoelectronics, nanomedicine, renewable energy, customized computing, the smart grid, and the Internet, all funded by federal and private agencies and individual donors.

For more information, please click here

Contacts:
Bill Kisliuk

310-206-0540

Copyright © UCLA

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Tissue regeneration using anti-inflammatory nanomolecules August 22nd, 2014

A breakthrough in imaging gold nanoparticles to atomic resolution by electron microscopy August 22nd, 2014

Ultra-short pulse lasers & Positioning August 21st, 2014

Malvern’s Dr Alan Rawle talks TLAs in plenary lecture at Particulate Systems Analysis conference August 21st, 2014

Govt.-Legislation/Regulation/Funding/Policy

Shaping the Future of Nanocrystals: Berkeley Lab Researchers Obtain First Direct Observation of Facet Formation in Nanocubes August 21st, 2014

Success in Intracellular Imaging of Cesium Distribution in Plants Used for Cesium Absorption August 19th, 2014

Electrical engineers take major step toward photonic circuits: Team invents non-metallic metamaterial that enables them to 'compress' and contain light August 19th, 2014

Promising Ferroelectric Materials Suffer From Unexpected Electric Polarizations: Brookhaven Lab scientists find surprising locked charge polarizations that impede performance in next-gen materials that could otherwise revolutionize data-driven devices August 18th, 2014

Nanomedicine

Tissue regeneration using anti-inflammatory nanomolecules August 22nd, 2014

Ultra-short pulse lasers & Positioning August 21st, 2014

Nanotechnology Helps Production of Super Adsorbent Polymers August 21st, 2014

Newly-Developed Nanobiosensor Quickly Diagnoses Cancer August 20th, 2014

Sensors

Newly-Developed Nanobiosensor Quickly Diagnoses Cancer August 20th, 2014

Graphene rubber bands could stretch limits of current healthcare, new research finds August 19th, 2014

Iranian Scientists Stabilize Protein on Highly Stable Electrode Surface August 14th, 2014

Non-Enzyme Nanosensors Quickly Measure Blood Sugar August 12th, 2014

Discoveries

Tissue regeneration using anti-inflammatory nanomolecules August 22nd, 2014

A breakthrough in imaging gold nanoparticles to atomic resolution by electron microscopy August 22nd, 2014

Shaping the Future of Nanocrystals: Berkeley Lab Researchers Obtain First Direct Observation of Facet Formation in Nanocubes August 21st, 2014

Water window imaging opportunity: A new theoretical study elucidates mechanisms that could help in producing coherent radiations, ultimately promoting high-contrast imaging of biological samples August 21st, 2014

Announcements

Tissue regeneration using anti-inflammatory nanomolecules August 22nd, 2014

A breakthrough in imaging gold nanoparticles to atomic resolution by electron microscopy August 22nd, 2014

Malvern’s Dr Alan Rawle talks TLAs in plenary lecture at Particulate Systems Analysis conference August 21st, 2014

Water window imaging opportunity: A new theoretical study elucidates mechanisms that could help in producing coherent radiations, ultimately promoting high-contrast imaging of biological samples August 21st, 2014

Nanobiotechnology

The channel that relaxes DNA: Relaxing DNA strands by using nano-channels: Instructions for use August 20th, 2014

Сalculations with Nanoscale Smart Particles August 19th, 2014

Interaction between Drug, DNA for Designing Anticancer Drugs Studied in Iran August 17th, 2014

Scientists fold RNA origami from a single strand: RNA origami is a new method for organizing molecules on the nanoscale. Using just a single strand of RNA, this technique can produce many complicated shapes. August 14th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE