Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Notre Dame researchers provide new insights into quantum dynamics and quantum chaos

Boldizsar Janko
Boldizsar Janko

Abstract:
A team of researchers led by University of Notre Dame physicist Boldizsar Janko has announced analytical prediction and numerical verification of novel quantum rotor states in nanostructured superconductors.

Notre Dame researchers provide new insights into quantum dynamics and quantum chaos

Notre Dame, IN | Posted on April 2nd, 2014

The international collaborative team points out that the classical rotor, a macroscopic particle of mass confined to a ring, is one of the most studied systems in classical mechanics. In a paper appearing in the April 1 issue of the journal Nature Scientific Reports, Janko and colleagues Shi-Hsin Lin, Milorad Milosevic, Lucian Covaci and Francois Peeters of the Universiteit Antwerpen in Belgium described how the quantum dynamics of quasiparticles in several classes of nanostructured superconductors can be mapped onto a quantum rotor. These results are the culmination of a nearly decade-long collaboration started in 2005, when Milosevic, Covaci and Peeters were visiting fellows of Notre Dame's Institute for Theoretical Sciences and Lin was a graduate student in Notre Dame's Department of Physics.

Besides being a remarkable example of a quantum analogue of a classical system, the superconducting rotor has a number of significant characteristics. It can be realized in a broad range of superconducting systems and has a tunable inertia and gravitational field. It also can be externally manipulated through effective tilt, pulsed gravity and pivot oscillations and can be converted to a quantum pendulum or be driven to a chaotic regime.

This realization of the quantum rotor therefore has the potential to provide insights into a variety of phenomena, which will be the focus of further experimental and theoretical investigation, possibly leading to practical applications such as advanced detectors.

####

For more information, please click here

Contacts:
Boldizsar Janko

574-631-8049

Copyright © University of Notre Dame

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Leti IEDM 2016 Paper Clarifies Correlation between Endurance, Window Margin and Retention in RRAM for First Time: Paper Presented at IEDM 2016 Offers Ways to Reconcile High-cycling Requirements and Instability at High Temperatures in Resistive RAM December 6th, 2016

Tokyo Institute of Technology research: 3D solutions to energy savings in silicon power transistors December 6th, 2016

Physicists decipher electronic properties of materials in work that may change transistors December 6th, 2016

Infrared instrumentation leader secures exclusive use of Vantablack coating December 5th, 2016

Physics

Shape matters when light meets atom: Mapping the interaction of a single atom with a single photon may inform design of quantum devices December 4th, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

An Archimedes' screw for groups of quantum particles November 19th, 2016

Trickling electrons: Close to absolute zero, the particles exhibit their quantum nature November 10th, 2016

Chip Technology

Leti IEDM 2016 Paper Clarifies Correlation between Endurance, Window Margin and Retention in RRAM for First Time: Paper Presented at IEDM 2016 Offers Ways to Reconcile High-cycling Requirements and Instability at High Temperatures in Resistive RAM December 6th, 2016

Tokyo Institute of Technology research: 3D solutions to energy savings in silicon power transistors December 6th, 2016

Physicists decipher electronic properties of materials in work that may change transistors December 6th, 2016

Construction of practical quantum computers radically simplified: Scientists invent ground-breaking new method that puts quantum computers within reach December 5th, 2016

Discoveries

Leti IEDM 2016 Paper Clarifies Correlation between Endurance, Window Margin and Retention in RRAM for First Time: Paper Presented at IEDM 2016 Offers Ways to Reconcile High-cycling Requirements and Instability at High Temperatures in Resistive RAM December 6th, 2016

Tokyo Institute of Technology research: 3D solutions to energy savings in silicon power transistors December 6th, 2016

Physicists decipher electronic properties of materials in work that may change transistors December 6th, 2016

Fast, efficient sperm tails inspire nanobiotechnology December 5th, 2016

Announcements

Leti IEDM 2016 Paper Clarifies Correlation between Endurance, Window Margin and Retention in RRAM for First Time: Paper Presented at IEDM 2016 Offers Ways to Reconcile High-cycling Requirements and Instability at High Temperatures in Resistive RAM December 6th, 2016

Tokyo Institute of Technology research: 3D solutions to energy savings in silicon power transistors December 6th, 2016

Physicists decipher electronic properties of materials in work that may change transistors December 6th, 2016

Infrared instrumentation leader secures exclusive use of Vantablack coating December 5th, 2016

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Tokyo Institute of Technology research: 3D solutions to energy savings in silicon power transistors December 6th, 2016

Physicists decipher electronic properties of materials in work that may change transistors December 6th, 2016

Fast, efficient sperm tails inspire nanobiotechnology December 5th, 2016

Journal Nanotechnology Progress International (JONPI) Volume 6, issue 2 coming out soon! December 5th, 2016

Quantum nanoscience

Physicists decipher electronic properties of materials in work that may change transistors December 6th, 2016

Shape matters when light meets atom: Mapping the interaction of a single atom with a single photon may inform design of quantum devices December 4th, 2016

Trickling electrons: Close to absolute zero, the particles exhibit their quantum nature November 10th, 2016

Scientists set traps for atoms with single-particle precision: Technique may enable large-scale atom arrays for quantum computing November 7th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project