Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Scientists watch nanoparticles grow: Analysis allows tailoring materials for switchable windows and solar cells

Left: Structure of the ammonium metatungstate dissolved in water on atomic length scale. The octahedra consisting of the tungsten ion in the centre and the six surrounding oxygen ions partly share corners and edges. Right: Structure of the nanoparticles in the ordered crystalline phase. The octahedra exclusively share corners. Credit: Dipankar Saha/Århus University
Left: Structure of the ammonium metatungstate dissolved in water on atomic length scale. The octahedra consisting of the tungsten ion in the centre and the six surrounding oxygen ions partly share corners and edges. Right: Structure of the nanoparticles in the ordered crystalline phase. The octahedra exclusively share corners.

Credit: Dipankar Saha/Århus University

Abstract:
With DESY's X-ray light source PETRA III, Danish scientists observed the growth of nanoparticles live. The study shows how tungsten oxide nanoparticles are forming from solution. These particles are used for example for smart windows, which become opaque at the flick of a switch, and they are also used in particular solar cells. The team around lead author Dr. Dipankar Saha from Århus University present their observations in the scientific journal "Angewandte Chemie - International Edition".

Scientists watch nanoparticles grow: Analysis allows tailoring materials for switchable windows and solar cells

Hamburg, Germany | Posted on March 27th, 2014

For their investigation, the scientists built a small reaction chamber, which is transparent for X-rays. "We use fine capillaries of sapphire or fused silica which are easily penetrable by X-rays," said Professor Bo Iversen, head of the research group. In these capillaries, the scientists transformed so-called ammonium metatungstate dissolved in water into nanoparticles at high temperature and high pressure. With the brilliant PETRA III X-ray light, the chemists were able to track the growth of small tungsten trioxide particles (WO3) with a typical size of about ten nanometre from the solution in real time.

"The X-ray measurements show the building blocks of the material," said co-author Dr. Ann-Christin Dippel from DESY, scientist at beamline P02.1, where the experiments were carried out. "With our method, we are able to observe the structure of the material at atomic length scale. What is special here is the possibility of following the dynamics of the growth process," Dippel points out. "The different crystal structures that form in these nanoparticles are already known. But now we can track in real-time the transformation mechanism of molecules to nanocrystals. We do not only see the sequence of the process but also why specific structures form."

On the molecular level, the basic units of many metal-oxygen compounds like oxides are octahedra, which consist of eight equal triangles. These octahedra may share corners or edges. Depending on their configuration, the resulting compounds have different characteristics. This is not only true for tungsten trioxide but is basically applicable to other materials.

The octahedra units in the solutions grow up to nanoparticles, with a ten nanometre small particle including about 25 octahedra. "We were able to determine that at first, both structure elements exist in the original material, the connection by corners and by edges," said Saha. "In the course of the reaction, the octahedra rearrange: the longer you wait, the more the edge connection disappears and the connection by corners becomes more frequent. The nanoparticles which developed in our investigations have a predominantly ordered crystal structure."

In the continuous industrial synthesis, this process occurs so quickly, that it mainly produces nanoparticles with mixed disordered structures. "Ordered structures are produced when nanoparticles get enough time to rearrange," said Saha. "We can use these observations for example to make available nanoparticles with special features. This method is also applicable to other nanoparticles."

Deutsches Elektronen-Synchrotron DESY is the leading German accelerator centre and one of the leading in the world. DESY is a member of the Helmholtz Association and receives its funding from the German Federal Ministry of Education and Research (BMBF) (90 percent) and the German federal states of Hamburg and Brandenburg (10 percent). At its locations in Hamburg and Zeuthen near Berlin, DESY develops, builds and operates large particle accelerators, and uses them to investigate the structure of matter. DESY's combination of photon science and particle physics is unique in Europe.

####

For more information, please click here

Contacts:
Dr. Thomas Zoufal

49-408-998-1666

Science contacts
Dr. Dipankar Saha
Århus University
+45 87 15 59 05


Dr. Ann-Christin Dippel
DESY
+49 172 1695626


Prof. Bo B. Iversen
Århus University
+45 87 15 59 82

Copyright © Deutsches Elektronen-Synchrotron DESY

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Reference

Related News Press

News and information

Conversion of Greenhouse Gases to Syngas in Presence of Nanocatalysts in Iran May 22nd, 2015

New Antibacterial Wound Dressing in Iran Can Display Replacement Time May 22nd, 2015

Haydale Named Lead Sponsor for Cambridge Graphene Festival May 22nd, 2015

Simulations predict flat liquid May 21st, 2015

Discoveries

Conversion of Greenhouse Gases to Syngas in Presence of Nanocatalysts in Iran May 22nd, 2015

New Antibacterial Wound Dressing in Iran Can Display Replacement Time May 22nd, 2015

Nanotherapy effective in mice with multiple myeloma May 21st, 2015

Turn that defect upside down: Twin boundaries in lithium-ion batteries May 21st, 2015

Announcements

Conversion of Greenhouse Gases to Syngas in Presence of Nanocatalysts in Iran May 22nd, 2015

New Antibacterial Wound Dressing in Iran Can Display Replacement Time May 22nd, 2015

Haydale Named Lead Sponsor for Cambridge Graphene Festival May 22nd, 2015

INSIDDE: Uncovering the real history of art using a graphene scanner May 21st, 2015

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Conversion of Greenhouse Gases to Syngas in Presence of Nanocatalysts in Iran May 22nd, 2015

Simulations predict flat liquid May 21st, 2015

Researchers develop new way to manufacture nanofibers May 21st, 2015

Nanotherapy effective in mice with multiple myeloma May 21st, 2015

Energy

Conversion of Greenhouse Gases to Syngas in Presence of Nanocatalysts in Iran May 22nd, 2015

Sandia researchers first to measure thermoelectric behavior by 'Tinkertoy' materials May 20th, 2015

Industrial Nanotech, Inc. Announces Official Launch of the Eagle Platinum Tile™ May 19th, 2015

FEI and Weatherford Enter Into Joint Agreement for Advanced Reservoir Characterization Services May 18th, 2015

Home

Industrial Nanotech, Inc. Announces Official Launch of the Eagle Platinum Tile™ May 19th, 2015

ORNL superhydrophobic glass coating offers clear benefits May 11th, 2015

The Original Frameless Shower Doors Installs DFI's FuseCube™ to Offer Hydrophobic Protective Coating as a Standard Feature: First DFI FuseCube™ Installed on the East Coast to Enable Key Differentiator for the Original Frameless Shower Doors January 29th, 2015

Materials - Next-generation insulation ... January 13th, 2015

Industrial

Wearables may get boost from boron-infused graphene: Rice U. researchers flex muscle of laser-written microsupercapacitors May 18th, 2015

ORNL demonstrates first large-scale graphene fabrication May 14th, 2015

Nano-policing pollution May 13th, 2015

ORNL superhydrophobic glass coating offers clear benefits May 11th, 2015

Solar/Photovoltaic

Efficiency record for black silicon solar cells jumps to 22.1 percent: Aalto University's researchers improved their previous record by over 3 absolute percents in cooperation with Universitat Politècnica de Catalunya May 18th, 2015

Wearables may get boost from boron-infused graphene: Rice U. researchers flex muscle of laser-written microsupercapacitors May 18th, 2015

Random nanowire configurations increase conductivity over heavily ordered configurations May 16th, 2015

ORNL demonstrates first large-scale graphene fabrication May 14th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project