Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Spintronic Thermoelectric Power Generators: A step towards energy efficient electronic devices

Schematic of the spintronic thermoelectric device fabricated by the University of Utah’s researchers. This device can convert even minute heat emitted by hand-held electronic devices such as laptops, etc. into useful electricity.

Image Credit: Courtesy of Gene Siegel and Shiang Teng, University of Utah
Schematic of the spintronic thermoelectric device fabricated by the University of Utah’s researchers. This device can convert even minute heat emitted by hand-held electronic devices such as laptops, etc. into useful electricity.

Image Credit: Courtesy of Gene Siegel and Shiang Teng, University of Utah

Abstract:
Imagine a computer so efficient that it can recycle its own waste heat to produce electricity. While such an idea may seem far-fetched today, significant progress has already been made to realize these devices. Researchers at the Nanostructured Materials Research Laboratory at the University of Utah have fabricated spintronics-based thin film devices which do just that i.e., convert even minute waste heat into useful electricity.

Spintronic Thermoelectric Power Generators: A step towards energy efficient electronic devices

Salt Lake City, UT | Posted on March 21st, 2014

"As electronic devices enter the nano-size regime, the problem of heat generation is becoming more and more severe," says University of Utah Materials Scientist Ashutosh Tiwari, who led the research published online Friday, March 21 in the Nature publishing group's journal "Scientific Reports".

"Our spintronic-based thermoelectric devices work at room temperature and doesn't require the continuous application of external magnetic field," Tiwari says. "Most of the spintronic thermoelectric devices in earlier studies required the continuous application of a magnetic field to keep the device magnetized."

"Spintronics is a new branch of electronics which utilizes both the charge as well as the spin of electrons," says Tiwari.

Tiwari conducted the research with graduate students Gene Siegel, Megan Campbell Prestgard and Shiang Teng. The study was funded by the U.S. National Science Foundation's Condensed Matter Physics Program, Sensors and Sensing Systems Program and the University of Utah's Materials Research Science and Engineering Center.

"The most important and fascinating aspect of our study is that these devices are not made of traditional thermoelectric materials which, when heated, generate a voltage simply because of the movement of charge carriers. This, known as Seebeck effect, has a fundamental limitation," says Tiwari. "Specifically, for achieving practically acceptable heat-to-electricity conversion efficiency, the electrical conductivity of the thermoelectric material should be maximized while its thermal conductivity should be simultaneously minimized. These two requirements are contradictory."

He adds, "Our spintronic-based devices are based on an altogether different concept known as spin-caloritronics. Here, thermal and electrical transport occurs in the different parts and hence these devices are not plagued by the problems encountered by their traditional counterparts."
Experiment

For making spintronic thermoelectric devices, Utah researchers deposited thin films of a material know as bismuth-doped YIG (Bi-YIG) using a 25 nanosecond pulsed laser. Over the Bi-YIG film, a 10 nm thick layer of platinum was deposited using a beam of electrons. The bi-layer structure thus prepared was kept in a magnetic field for a few minutes to magnetically polarize Bi-YIG film. After this, the external magnetic field was removed and a temperature gradient was applied across the bilayer. This temperature difference leads to a current of low-lying excitations of localized spins, known as magnons, in the Bi-YIG. When this magnon current enters in the platinum layer, it is converted into a charge voltage through a process named as the inverse-Hall effect, explains Gene Siegel, first author of the paper.

The researchers' trick was to generate very large roughness on the surface of the Bi-YIG films by using very high energy density laser pulses. Rough surfaces resulted in very large stray fields, which gave rise to large magnetic coercevity in the films. Because of the large corecivity, once these devices are magnetized they remain magnetized and don't require any external field for operation, says Siegel.

"Our experimental findings are in excellent agreement with the predictions of the Magnon transport theory," says Tiwari.

"Tiwari's group's research opens the doors for the development of spin-driven thermoelectrics which can turn waste heat into electricity, and make efficient electronic devices," says Ajay Nahata, Director of the University of Utah's NSF MRSEC on Next Generation Materials for Plasmonics & Organic Spintronics.

####

For more information, please click here

Contacts:
Ashutosh Tiwari
associate professor of materials science and engineering
Phone: 801-585-1666


Aditi Risbud
senior communications and marketing officer
University of Utah College of Engineering
Office Phone: 801-587-9038
Cell Phone: 213-400-5815

Copyright © University of Utah

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

HP Supercomputer at NREL Garners Top Honor October 19th, 2014

First Canada Excellence Research Chair gets $10 million from the federal government for oilsands research at the University of Calgary: Federal government announces prestigious research chair to study improving oil production efficiency October 19th, 2014

Ucore's McKenzie to Deliver Presentation to Rare Earths Conference in Singapore as Highlight of Fall 2014 Marketplace Schedule October 19th, 2014

Non-Toxic Nanocatalysts Open New Window for Significant Decrease in Reaction Process October 19th, 2014

Thin films

Nanocoatings Market By Product Is Expected To Reach USD 8.17 Billion By 2020: Grand View Research, Inc. October 15th, 2014

3x improvement in wear resistance from Carbodeon nanodiamond-enhanced electroless nickel plating October 14th, 2014

Tailored flexible illusion coatings hide objects from detection October 13th, 2014

HZO Teams With Deutsche Telekom to Unveil the Waterproof Tolino Vision 2 eReader: The New HZO Protected eReader Ushers in a New Era of Waterproof Electronics, Providing a Seamless User Experience Without the Risk of Using Port Doors and Mechanical Seals October 10th, 2014

Spintronics

Graphene and Amaranthus Superparamagnets: Breakthrough nanoparticles discovery of Indian researcher September 23rd, 2014

IEEE International Electron Devices Meeting To Celebrate 60th Anniversary as The Leading Technical Conference for Advanced Semiconductor Devices September 18th, 2014

A new, tunable device for spintronics: An international team of scientists including physicist Jairo Sinova from the University of Mainz realises a tunable spin-charge converter made of GaAs August 29th, 2014

Molecular engineers record an electron's quantum behavior August 14th, 2014

Chip Technology

Superconducting circuits, simplified: New circuit design could unlock the power of experimental superconducting computer chips October 18th, 2014

3DXNano™ ESD Carbon Nanotube 3D Printing Filament - optimized for demanding 3D printing applications in the semi-con and electronics industry October 16th, 2014

Future computers could be built from magnetic 'tornadoes' October 14th, 2014

Australian teams set new records for silicon quantum computing October 12th, 2014

Discoveries

Non-Toxic Nanocatalysts Open New Window for Significant Decrease in Reaction Process October 19th, 2014

Plastic nanoparticles also harm freshwater organisms October 18th, 2014

Superconducting circuits, simplified: New circuit design could unlock the power of experimental superconducting computer chips October 18th, 2014

Nanotechnology Improves Quality of Anti-Corrosive Coatings October 17th, 2014

Announcements

HP Supercomputer at NREL Garners Top Honor October 19th, 2014

First Canada Excellence Research Chair gets $10 million from the federal government for oilsands research at the University of Calgary: Federal government announces prestigious research chair to study improving oil production efficiency October 19th, 2014

Ucore's McKenzie to Deliver Presentation to Rare Earths Conference in Singapore as Highlight of Fall 2014 Marketplace Schedule October 19th, 2014

Non-Toxic Nanocatalysts Open New Window for Significant Decrease in Reaction Process October 19th, 2014

Energy

First Canada Excellence Research Chair gets $10 million from the federal government for oilsands research at the University of Calgary: Federal government announces prestigious research chair to study improving oil production efficiency October 19th, 2014

Magnetic mirrors enable new technologies by reflecting light in uncanny ways October 16th, 2014

Unique catalysts for hydrogen fuel cells synthesized in ordinary kitchen microwave oven October 14th, 2014

Dyesol Signs Letter of Intent with Tata Steel October 13th, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE