Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Spintronic Thermoelectric Power Generators: A step towards energy efficient electronic devices

Schematic of the spintronic thermoelectric device fabricated by the University of Utah’s researchers. This device can convert even minute heat emitted by hand-held electronic devices such as laptops, etc. into useful electricity.

Image Credit: Courtesy of Gene Siegel and Shiang Teng, University of Utah
Schematic of the spintronic thermoelectric device fabricated by the University of Utah’s researchers. This device can convert even minute heat emitted by hand-held electronic devices such as laptops, etc. into useful electricity.

Image Credit: Courtesy of Gene Siegel and Shiang Teng, University of Utah

Abstract:
Imagine a computer so efficient that it can recycle its own waste heat to produce electricity. While such an idea may seem far-fetched today, significant progress has already been made to realize these devices. Researchers at the Nanostructured Materials Research Laboratory at the University of Utah have fabricated spintronics-based thin film devices which do just that i.e., convert even minute waste heat into useful electricity.

Spintronic Thermoelectric Power Generators: A step towards energy efficient electronic devices

Salt Lake City, UT | Posted on March 21st, 2014

"As electronic devices enter the nano-size regime, the problem of heat generation is becoming more and more severe," says University of Utah Materials Scientist Ashutosh Tiwari, who led the research published online Friday, March 21 in the Nature publishing group's journal "Scientific Reports".

"Our spintronic-based thermoelectric devices work at room temperature and doesn't require the continuous application of external magnetic field," Tiwari says. "Most of the spintronic thermoelectric devices in earlier studies required the continuous application of a magnetic field to keep the device magnetized."

"Spintronics is a new branch of electronics which utilizes both the charge as well as the spin of electrons," says Tiwari.

Tiwari conducted the research with graduate students Gene Siegel, Megan Campbell Prestgard and Shiang Teng. The study was funded by the U.S. National Science Foundation's Condensed Matter Physics Program, Sensors and Sensing Systems Program and the University of Utah's Materials Research Science and Engineering Center.

"The most important and fascinating aspect of our study is that these devices are not made of traditional thermoelectric materials which, when heated, generate a voltage simply because of the movement of charge carriers. This, known as Seebeck effect, has a fundamental limitation," says Tiwari. "Specifically, for achieving practically acceptable heat-to-electricity conversion efficiency, the electrical conductivity of the thermoelectric material should be maximized while its thermal conductivity should be simultaneously minimized. These two requirements are contradictory."

He adds, "Our spintronic-based devices are based on an altogether different concept known as spin-caloritronics. Here, thermal and electrical transport occurs in the different parts and hence these devices are not plagued by the problems encountered by their traditional counterparts."
Experiment

For making spintronic thermoelectric devices, Utah researchers deposited thin films of a material know as bismuth-doped YIG (Bi-YIG) using a 25 nanosecond pulsed laser. Over the Bi-YIG film, a 10 nm thick layer of platinum was deposited using a beam of electrons. The bi-layer structure thus prepared was kept in a magnetic field for a few minutes to magnetically polarize Bi-YIG film. After this, the external magnetic field was removed and a temperature gradient was applied across the bilayer. This temperature difference leads to a current of low-lying excitations of localized spins, known as magnons, in the Bi-YIG. When this magnon current enters in the platinum layer, it is converted into a charge voltage through a process named as the inverse-Hall effect, explains Gene Siegel, first author of the paper.

The researchers' trick was to generate very large roughness on the surface of the Bi-YIG films by using very high energy density laser pulses. Rough surfaces resulted in very large stray fields, which gave rise to large magnetic coercevity in the films. Because of the large corecivity, once these devices are magnetized they remain magnetized and don't require any external field for operation, says Siegel.

"Our experimental findings are in excellent agreement with the predictions of the Magnon transport theory," says Tiwari.

"Tiwari's group's research opens the doors for the development of spin-driven thermoelectrics which can turn waste heat into electricity, and make efficient electronic devices," says Ajay Nahata, Director of the University of Utah's NSF MRSEC on Next Generation Materials for Plasmonics & Organic Spintronics.

####

For more information, please click here

Contacts:
Ashutosh Tiwari
associate professor of materials science and engineering
Phone: 801-585-1666


Aditi Risbud
senior communications and marketing officer
University of Utah College of Engineering
Office Phone: 801-587-9038
Cell Phone: 213-400-5815

Copyright © University of Utah

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

A 'movie' of ultrafast rotating molecules at a hundred billion per second: A quantum wave-like nature was successfully observed in rotating nitrogen molecules July 4th, 2015

New Biosensor Produced in Iran to Detect Effective Drugs in Cancer Treatment July 4th, 2015

Clues to inner atomic life from subtle light-emission shifts: Hyperfine structure of light absorption by short-lived cadmium atom isotopes reveals characteristics of the nucleus that matter for high precision detection methods July 3rd, 2015

Pioneering Southampton scientist awarded prestigious physics medal July 3rd, 2015

Thin films

New micro-supercapacitor structure inspired by the intricate design of leaves: A team of scientists in Korea has devised a new method for making a graphene film for supercapacitors July 2nd, 2015

Stanford researchers stretch a thin crystal to get better solar cells June 25th, 2015

World’s 1st Full-Color, Flexible, Skin-Like Display Developed at UCF June 24th, 2015

Picosun ALD breaks through in medical technology June 23rd, 2015

Spintronics

Influential Interfaces Lead to Advances in Organic Spintronics July 1st, 2015

Emergence of a 'devil's staircase' in a spin-valve system July 1st, 2015

Spintronics advance brings wafer-scale quantum devices closer to reality June 24th, 2015

Solvent encapsulation is the trick: a solid material with spin-transition solution-like behaviour June 5th, 2015

Chip Technology

Nanometrics to Announce Second Quarter Financial Results on July 23, 2015 July 2nd, 2015

The quantum middle man July 2nd, 2015

New technology using silver may hold key to electronics advances July 2nd, 2015

Emergence of a 'devil's staircase' in a spin-valve system July 1st, 2015

Discoveries

A 'movie' of ultrafast rotating molecules at a hundred billion per second: A quantum wave-like nature was successfully observed in rotating nitrogen molecules July 4th, 2015

New Biosensor Produced in Iran to Detect Effective Drugs in Cancer Treatment July 4th, 2015

Clues to inner atomic life from subtle light-emission shifts: Hyperfine structure of light absorption by short-lived cadmium atom isotopes reveals characteristics of the nucleus that matter for high precision detection methods July 3rd, 2015

Groundbreaking research to help control liquids at micro and nano scales July 3rd, 2015

Announcements

A 'movie' of ultrafast rotating molecules at a hundred billion per second: A quantum wave-like nature was successfully observed in rotating nitrogen molecules July 4th, 2015

New Biosensor Produced in Iran to Detect Effective Drugs in Cancer Treatment July 4th, 2015

Clues to inner atomic life from subtle light-emission shifts: Hyperfine structure of light absorption by short-lived cadmium atom isotopes reveals characteristics of the nucleus that matter for high precision detection methods July 3rd, 2015

Pioneering Southampton scientist awarded prestigious physics medal July 3rd, 2015

Energy

New technology using silver may hold key to electronics advances July 2nd, 2015

Visible Light-Sensitive Photocatalysts Used for Purification of Contaminated Water in Iran June 30th, 2015

June 29th, 2015

Making new materials with micro-explosions: ANU media release: Scientists have made exotic new materials by creating laser-induced micro-explosions in silicon, the common computer chip material June 29th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project