Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Spintronic Thermoelectric Power Generators: A step towards energy efficient electronic devices

Schematic of the spintronic thermoelectric device fabricated by the University of Utah’s researchers. This device can convert even minute heat emitted by hand-held electronic devices such as laptops, etc. into useful electricity.

Image Credit: Courtesy of Gene Siegel and Shiang Teng, University of Utah
Schematic of the spintronic thermoelectric device fabricated by the University of Utah’s researchers. This device can convert even minute heat emitted by hand-held electronic devices such as laptops, etc. into useful electricity.

Image Credit: Courtesy of Gene Siegel and Shiang Teng, University of Utah

Abstract:
Imagine a computer so efficient that it can recycle its own waste heat to produce electricity. While such an idea may seem far-fetched today, significant progress has already been made to realize these devices. Researchers at the Nanostructured Materials Research Laboratory at the University of Utah have fabricated spintronics-based thin film devices which do just that i.e., convert even minute waste heat into useful electricity.

Spintronic Thermoelectric Power Generators: A step towards energy efficient electronic devices

Salt Lake City, UT | Posted on March 21st, 2014

"As electronic devices enter the nano-size regime, the problem of heat generation is becoming more and more severe," says University of Utah Materials Scientist Ashutosh Tiwari, who led the research published online Friday, March 21 in the Nature publishing group's journal "Scientific Reports".

"Our spintronic-based thermoelectric devices work at room temperature and doesn't require the continuous application of external magnetic field," Tiwari says. "Most of the spintronic thermoelectric devices in earlier studies required the continuous application of a magnetic field to keep the device magnetized."

"Spintronics is a new branch of electronics which utilizes both the charge as well as the spin of electrons," says Tiwari.

Tiwari conducted the research with graduate students Gene Siegel, Megan Campbell Prestgard and Shiang Teng. The study was funded by the U.S. National Science Foundation's Condensed Matter Physics Program, Sensors and Sensing Systems Program and the University of Utah's Materials Research Science and Engineering Center.

"The most important and fascinating aspect of our study is that these devices are not made of traditional thermoelectric materials which, when heated, generate a voltage simply because of the movement of charge carriers. This, known as Seebeck effect, has a fundamental limitation," says Tiwari. "Specifically, for achieving practically acceptable heat-to-electricity conversion efficiency, the electrical conductivity of the thermoelectric material should be maximized while its thermal conductivity should be simultaneously minimized. These two requirements are contradictory."

He adds, "Our spintronic-based devices are based on an altogether different concept known as spin-caloritronics. Here, thermal and electrical transport occurs in the different parts and hence these devices are not plagued by the problems encountered by their traditional counterparts."
Experiment

For making spintronic thermoelectric devices, Utah researchers deposited thin films of a material know as bismuth-doped YIG (Bi-YIG) using a 25 nanosecond pulsed laser. Over the Bi-YIG film, a 10 nm thick layer of platinum was deposited using a beam of electrons. The bi-layer structure thus prepared was kept in a magnetic field for a few minutes to magnetically polarize Bi-YIG film. After this, the external magnetic field was removed and a temperature gradient was applied across the bilayer. This temperature difference leads to a current of low-lying excitations of localized spins, known as magnons, in the Bi-YIG. When this magnon current enters in the platinum layer, it is converted into a charge voltage through a process named as the inverse-Hall effect, explains Gene Siegel, first author of the paper.

The researchers' trick was to generate very large roughness on the surface of the Bi-YIG films by using very high energy density laser pulses. Rough surfaces resulted in very large stray fields, which gave rise to large magnetic coercevity in the films. Because of the large corecivity, once these devices are magnetized they remain magnetized and don't require any external field for operation, says Siegel.

"Our experimental findings are in excellent agreement with the predictions of the Magnon transport theory," says Tiwari.

"Tiwari's group's research opens the doors for the development of spin-driven thermoelectrics which can turn waste heat into electricity, and make efficient electronic devices," says Ajay Nahata, Director of the University of Utah's NSF MRSEC on Next Generation Materials for Plasmonics & Organic Spintronics.

####

For more information, please click here

Contacts:
Ashutosh Tiwari
associate professor of materials science and engineering
Phone: 801-585-1666


Aditi Risbud
senior communications and marketing officer
University of Utah College of Engineering
Office Phone: 801-587-9038
Cell Phone: 213-400-5815

Copyright © University of Utah

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New qubit now works without breaks: A universal design for superconducting qubits has been created April 19th, 2018

Observing biological nanotransporters: Chemistry April 19th, 2018

Grand Opening of UC Irvine Materials Research Institute (IMRI) to Spotlight JEOL Center for Nanoscale Solutions: Renowned Materials Scientists to Present at the 1st International Symposium on Advanced Microscopy and Spectroscopy (ISAMS) April 18th, 2018

Salt boosts creation of 2-D materials: Rice University scientists show how salt lowers reaction temperatures to make novel materials April 18th, 2018

Thin films

High efficiency solar power conversion allowed by a novel composite material: A composite thin film developed at INRS improves significantly solar cells' power conversion efficiency April 10th, 2018

Researchers develop nanoparticle films for high-density data storage: April 3rd, 2018

Monocrystalline silicon thin film for cost-cutting solar cells with 10-times faster growth rate fabricated: Controlling nano surface roughness of porous silicon March 20th, 2018

Plasmons triggered in nanotube quantum wells: Rice, Tokyo Metropolitan scientists create platform for unique near-infrared devices March 16th, 2018

Spintronics

Diamonds show promise for spintronic devices: New experiments demonstrate the potential for diamond as a material for spintronics January 30th, 2018

Researchers from TU Delft combine spintronics and nanophotonics in 2-D material January 25th, 2018

ICN2 researchers compute unprecedented values for spin lifetime anisotropy in graphene November 17th, 2017

Spin current detection in quantum materials unlocks potential for alternative electronics October 15th, 2017

Chip Technology

New qubit now works without breaks: A universal design for superconducting qubits has been created April 19th, 2018

Salt boosts creation of 2-D materials: Rice University scientists show how salt lowers reaction temperatures to make novel materials April 18th, 2018

When superconductivity disappears in the core of a quantum tube: By replacing the electrons with ultra-cold atoms, a group of physicists has created a perfectly clean material, unveiling new states of matter at the quantum level April 16th, 2018

Nanometrics to Announce First Quarter Financial Results on May 1, 2018 April 10th, 2018

Discoveries

New qubit now works without breaks: A universal design for superconducting qubits has been created April 19th, 2018

Observing biological nanotransporters: Chemistry April 19th, 2018

Salt boosts creation of 2-D materials: Rice University scientists show how salt lowers reaction temperatures to make novel materials April 18th, 2018

Individual impurity atoms detectable in graphene April 18th, 2018

Announcements

New qubit now works without breaks: A universal design for superconducting qubits has been created April 19th, 2018

Observing biological nanotransporters: Chemistry April 19th, 2018

Grand Opening of UC Irvine Materials Research Institute (IMRI) to Spotlight JEOL Center for Nanoscale Solutions: Renowned Materials Scientists to Present at the 1st International Symposium on Advanced Microscopy and Spectroscopy (ISAMS) April 18th, 2018

Salt boosts creation of 2-D materials: Rice University scientists show how salt lowers reaction temperatures to make novel materials April 18th, 2018

Energy

Psst! A whispering gallery for light boosts solar cells April 14th, 2018

High efficiency solar power conversion allowed by a novel composite material: A composite thin film developed at INRS improves significantly solar cells' power conversion efficiency April 10th, 2018

Light 'relaxes' crystal to boost solar cell efficiency: Rice, Los Alamos discovery advances case for perovskite-based solar cells April 6th, 2018

Double perovskites in environmentally friendly solar cells: Long electron-hole diffusion length in high-quality lead-free double perovskite films April 6th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project