Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > No-refrigeration, spray vaccine could curb diseases in remote areas

Abstract:
Title

Pathogen mimicking nanovaccine platform technology: A new paradigm

Abstract

The design of vaccines and therapeutics to address infectious diseases is fraught with challenges ranging from the need for cold storage to poor immunogenicity to the need for multiple doses to the need for needle-based methods that require medical professionals to administer. We have developed a cross-disciplinary approach at the intersection of polymer chemistry, nanotechnology, and immunology for the molecular design of a safe, needle-free, and efficacious nanoparticle-based platform that can address these challenges and provide a robust technology to address both pre- and post-exposure to respiratory pathogens. These biodegradable nanoparticles are based on amphiphilic polyanhydrides, which degrade by hydrolytic cleavage of the anhydride bond. We have shown using a bottom-up approach that vaccine adjuvants based on amphiphilic polyanhydride nanoparticles are capable of mimicking a natural infection and inducing a robust immune response with long-lived protection against a subsequent challenge. The nanoparticles possess the unique ability to mimic pathogens with respect to persisting within and activating immune cells as well as rapidly distributing to tissue sites distal to the site of administration. Furthermore, these particles can be targeted for uptake by immune cells by functionalizing their surface with carbohydrates, enabling more efficient delivery of antigen to dendritic cells and macrophages.

Our studies have shown that the nanoparticles are safe when administered via multiple routes - intranasal, subcutaneous, and intramuscular. These particles are stable at high temperature for extended periods of time obviating the "cold chain", which is a major hurdle in the deployment of vaccines to remote regions of the globe. The nanoparticles can be designed to encapsulate fragile protein antigens and deliver them in a sustained manner to immune cells, facilitating the maintenance of antigen-specific CD8+ and CD4+ T cells. We have demonstrated that these nanovaccines confer full protection in a single intranasal dose ten months prior to lethal challenge by several respiratory pathogens. Additionally, these particles can be used for effective intracellular delivery of antibiotics in a single administration, which results in lower toxicity, enhanced patient compliance, dose sparing, and cost savings. This rational approach for designing novel amphiphilic materials as nanoscale adjuvants and therapeutics has the tantalizing potential to catalyze the development of next generation technologies against emerging and re-emerging diseases.

No-refrigeration, spray vaccine could curb diseases in remote areas

Dallas, TX | Posted on March 19th, 2014

A new kind of single-dose vaccine that comes in a nasal spray and doesn't require refrigeration could dramatically alter the public health landscape — get more people vaccinated around the world and address the looming threats of emerging and re-emerging diseases. Researchers presented the latest design and testing of these "nanovaccines" at the 247th National Meeting & Exposition of the American Chemical Society (ACS), the world's largest scientific society.

Their talk was one of more than 10,000 presentations at the meeting, being held here through Thursday at the Dallas Convention Center and area hotels.

"Our nanovaccine approach could be instrumental for containing future outbreaks of recently emerged and re-emerging diseases, such as SARS, new flu strains and multi-drug resistant tuberculosis," said Balaji Narasimhan, Ph.D., the project's lead researcher.

He noted that most of today's vaccines require needles, boosters and refrigeration, all of which pose challenges for doctors and patients. Other than the pain factor, which can lower the chances that someone will seek out a vaccine, follow-up shots and refrigeration further reduce the reach of these vitally important preventive treatments. In some places with limited resources, refrigeration simply isn't available. Thus, many people who need vaccinations the most aren't getting them at all. The good news is that the vaccines Narasimhan's team is developing don't need to be kept cold and are easy to administer.

"Our nanovaccines can be stored at room temperature for as long as six to 10 months and still work," said Narasimhan, professor of chemical engineering at Iowa State University. "Also, we're designing them so they get delivered in one dose through a nasal spray, which could potentially allow patients to give the vaccine to themselves."

Another major limitation of traditional vaccines is the way they work, he said. Most current vaccines help a person develop disease immunity by introducing part of a virus or bacteria and triggering the body's humoral response — the part of the immune system that produces antibodies to fight off a harmful pathogen. Later, if the person gets infected by that microbe, the body immediately knows how to respond.

But increasingly, evidence is emerging that the other component of the body's immune system, what's called the cell-mediated arm, also plays an important part in some emerging and re-emerging diseases, such as whooping cough. This side of the immune system depends on a group of cells called T cells, rather than antibodies, to fight viruses and bacteria.

Part of the elegance of these nanovaccines is their simplicity and versatility, Narasimhan explained. They are made of only two components: bits of proteins from a virus or bacteria packed into nontoxic, biodegradable polymers that can be custom-designed.

When administered through the nose or by a shot, these tiny packages enter the body and flag the immune system. Sentinels called antigen-presenting cells that keep watch in the body for foreign invaders gobble up the nanovaccine particles, chop up the polymers and pathogen proteins, and appropriately put pieces of the proteins on their surfaces. Depending on the chemistry of the nanovaccine, this triggers the body's cell-mediated or humoral immune response and trains it to recognize the pathogen and attack it quickly in case of future infections.

"We have exciting results that attest to the ability of the nanovaccine formulations to do a very good job of activating cell-mediated immunity," said Narasimhan. "We've shown that it works with rodents, and we're moving forward to show that in larger animals, as well."

Funding for this work came from the National Institute of Allergy and Infectious Diseases, the United States Army Medical Research and Materiel Command and the Department of Defense Office of Naval Research.

####

About American Chemical Society
The American Chemical Society is a nonprofit organization chartered by the U.S. Congress. With more than 161,000 members, ACS is the world's largest scientific society and a global leader in providing access to chemistry-related research through its multiple databases, peer-reviewed journals and scientific conferences. Its main offices are in Washington, D.C., and Columbus, Ohio.

To automatically receive news releases from the American Chemical Society, contact .

For more information, please click here

Contacts:
Michael Bernstein
214-853-8005 (Dallas Press Center, March 14-19)
202-872-6042


Katie Cottingham, Ph.D.
214-853-8005 (Dallas Press Center, March 14-19)
301-775-8455

Copyright © American Chemical Society

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

TCL Unveils First 65” TV Featuring QD Vision’s Color IQ™ Quantum Dot Technology: Emerging industry leader introduces expanded quantum dot TV lineup May 30th, 2015

Nanotech Secures Additional Patents in Advanced Security Features: New patented features gain attention from the banknote industry May 30th, 2015

New 'designer carbon' from Stanford boosts battery performance May 30th, 2015

Two UCSB Professors Receive Early Career Research Awards: The Department of Energy’s award for young scientists acknowledges UC Santa Barbara’s standing as a top tier research institution May 29th, 2015

Govt.-Legislation/Regulation/Funding/Policy

OSU researchers prove magnetism can control heat, sound: Team leverages OSC services to help confirm, interpret experimental findings May 29th, 2015

Physicists precisely measure interaction between atoms and carbon surfaces May 28th, 2015

Linking superconductivity and structure May 28th, 2015

Chemists discover key reaction mechanism behind the highly touted sodium-oxygen battery May 28th, 2015

Nanomedicine

New chip makes testing for antibiotic-resistant bacteria faster, easier: Researchers at the University of Toronto design diagnostic chip to reduce testing time from days to one hour, allowing doctors to pick the right antibiotic the first time May 28th, 2015

New electronic stent could provide feedback and therapy — then dissolve May 27th, 2015

Arrowhead to Present at Jefferies 2015 Healthcare Conference May 27th, 2015

Nanotechnology identifies brain tumor types through MRI 'virtual biopsy' in animal studies: If results are confirmed in humans, tumor cells could someday be diagnosed by MRI imaging and treated with tumor-specific IV injections; new NIH grant will fund future study May 27th, 2015

Discoveries

Stanford breakthrough heralds super-efficient light-based computers: Light can transmit more data while consuming far less power than electricity, and an engineering feat brings optical data transport closer to replacing wires May 29th, 2015

Donuts, math, and superdense teleportation of quantum information May 29th, 2015

OSU researchers prove magnetism can control heat, sound: Team leverages OSC services to help confirm, interpret experimental findings May 29th, 2015

New chip makes testing for antibiotic-resistant bacteria faster, easier: Researchers at the University of Toronto design diagnostic chip to reduce testing time from days to one hour, allowing doctors to pick the right antibiotic the first time May 28th, 2015

Announcements

TCL Unveils First 65” TV Featuring QD Vision’s Color IQ™ Quantum Dot Technology: Emerging industry leader introduces expanded quantum dot TV lineup May 30th, 2015

Nanotech Secures Additional Patents in Advanced Security Features: New patented features gain attention from the banknote industry May 30th, 2015

New 'designer carbon' from Stanford boosts battery performance May 30th, 2015

Two UCSB Professors Receive Early Career Research Awards: The Department of Energy’s award for young scientists acknowledges UC Santa Barbara’s standing as a top tier research institution May 29th, 2015

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

New 'designer carbon' from Stanford boosts battery performance May 30th, 2015

Stanford breakthrough heralds super-efficient light-based computers: Light can transmit more data while consuming far less power than electricity, and an engineering feat brings optical data transport closer to replacing wires May 29th, 2015

Donuts, math, and superdense teleportation of quantum information May 29th, 2015

OSU researchers prove magnetism can control heat, sound: Team leverages OSC services to help confirm, interpret experimental findings May 29th, 2015

Events/Classes

SouthWest NanoTechnologies Introduces AgeNT™ Transparent Conductor System at SID Display Week, Booth #543 May 28th, 2015

Technology for Tomorrow’s Market Opportunities and Challenges: LetiDays Grenoble Presents the Possibilities: June 24-25 Event Includes Focus on IoT-Augmented Mobility and Leti’s Latest Results on Silicon Technologies, Sensors, Health Applications and Smart Cities May 27th, 2015

Arrowhead to Present at Jefferies 2015 Healthcare Conference May 27th, 2015

Haydale Named Lead Sponsor for Cambridge Graphene Festival May 22nd, 2015

Alliances/Partnerships/Distributorships

Samtec, Global Provider of Interconnect Systems, Joins IRT Nanoelec Silicon Photonics Program May 21st, 2015

SUNY Poly CNSE and NIOSH Launch Federal Nano Health and Safety Consortium: May 20th, 2015

Industrial Nanotech, Inc. Announces Official Launch of the Eagle Platinum Tile™ May 19th, 2015

DiATOME enables surface preparation for AFM and FIB May 19th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project