Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Nanopores control the inner ear's ability to select sounds: Inner-ear membrane uses tiny pores to mechanically separate sounds, researchers find

This optical microscope image depicts wave motion in a cross-section of the tectorial membrane, part of the inner ear. This membrane is a microscale gel, smaller in width than a single human hair, and it plays a key role in stimulating sensory receptors of the inner ear. Waves traveling on this membrane control our ability to separate sounds of varying pitch and intensity.  
Image courtesy of MIT's Micromechanics Group
This optical microscope image depicts wave motion in a cross-section of the tectorial membrane, part of the inner ear. This membrane is a microscale gel, smaller in width than a single human hair, and it plays a key role in stimulating sensory receptors of the inner ear. Waves traveling on this membrane control our ability to separate sounds of varying pitch and intensity.

Image courtesy of MIT's Micromechanics Group

Abstract:
Even in a crowded room full of background noise, the human ear is remarkably adept at tuning in to a single voice a feat that has proved remarkably difficult for computers to match. A new analysis of the underlying mechanisms, conducted by researchers at MIT, has provided insights that could ultimately lead to better machine hearing, and perhaps to better hearing aids as well.

Nanopores control the inner ear's ability to select sounds: Inner-ear membrane uses tiny pores to mechanically separate sounds, researchers find

Cambridge, MA | Posted on March 18th, 2014

Our ears' selectivity, it turns out, arises from evolution's precise tuning of a tiny membrane, inside the inner ear, called the tectorial membrane. The viscosity of this membrane its firmness, or lack thereof depends on the size and distribution of tiny pores, just a few tens of nanometers wide. This, in turn, provides mechanical filtering that helps to sort out specific sounds.

The new findings are reported in the Biophysical Journal by a team led by MIT graduate student Jonathan Sellon, and including research scientist Roozbeh Ghaffari, former graduate student Shirin Farrahi, and professor of electrical engineering Dennis Freeman. The team collaborated with biologist Guy Richardson of the University of Sussex.

Elusive understanding

In discriminating among competing sounds, the human ear is "extraordinary compared to conventional speech- and sound-recognition technologies," Freeman says. The exact reasons have remained elusive but the importance of the tectorial membrane, located inside the cochlea, or inner ear, has become clear in recent years, largely through the work of Freeman and his colleagues. Now it seems that a flawed assumption contributed to the longstanding difficulty in understanding the importance of this membrane.

Much of our ability to differentiate among sounds is frequency-based, Freeman says so researchers had "assumed that the better we could resolve frequency, the better we could hear." But this assumption turns out not always to be true.

In fact, Freeman and his co-authors previously found that tectorial membranes with a certain genetic defect are actually highly sensitive to variations in frequency and the result is worse hearing, not better.

The MIT team found "a fundamental tradeoff between how well you can resolve different frequencies and how long it takes to do it," Freeman explains. That makes the finer frequency discrimination too slow to be useful in real-world sound selectivity.

Too fast for neurons

Previous work by Freeman and colleagues has shown that the tectorial membrane plays a fundamental role in sound discrimination by carrying waves that stimulate a particular kind of sensory receptor. This process is essential in deciphering competing sounds, but it takes place too quickly for neural processes to keep pace. Nature, over the course of evolution, appears to have produced a very effective electromechanical system, Freeman says, that can keep up with the speed of these sound waves.

The new work explains how the membrane's structure determines how well it filters sound. The team studied two genetic variants that cause nanopores within the tectorial membrane to be smaller or larger than normal. The pore size affects the viscosity of the membrane and its sensitivity to different frequencies.

The tectorial membrane is spongelike, riddled with tiny pores. By studying how its viscosity varies with pore size, the team was able to determine that the typical pore size observed in mice about 40 nanometers across represents an optimal size for combining frequency discrimination with overall sensitivity. Pores that are larger or smaller impair hearing.

"It really changes the way we think about this structure," Ghaffari says. The new findings show that fluid viscosity and pores are actually essential to its performance. Changing the sizes of tectorial membrane nanopores, via biochemical manipulation or other means, can provide unique ways to alter hearing sensitivity and frequency discrimination.

###

The research was supported by the National Institutes of Health; the National Science Foundation; and the Wellcome Trust.

Written by David Chandler, MIT News Office

####

For more information, please click here

Contacts:
Abby Abazorius

617-253-2709

Copyright © Massachusetts Institute of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Archive: Tuning in to a new hearing mechanism:

Archive: MIT finds new hearing mechanism:

Related News Press

News and information

Controlling phase changes in solids: Controlling phase changes in solids July 29th, 2015

Liquipel Debuts Eyesight-Saving ION-Glass Blue Light Protection for iPhones and Androids at RadioShack Stores Nationwide: Liquipel's Unique Protective Screen, Available at RadioShack, Cuts Harmful Blue Light Implicated in Macular Degeneration by 10x July 28th, 2015

Nanophase to present paper on slurry pH impact at Optics + Photonics conference July 28th, 2015

Laboratorial Performance of Nanocomposite Membrane Improved in Water Purification July 28th, 2015

Govt.-Legislation/Regulation/Funding/Policy

New computer model could explain how simple molecules took first step toward life: Two Brookhaven researchers developed theoretical model to explain the origins of self-replicating molecules July 28th, 2015

Short wavelength plasmons observed in nanotubes: Berkeley Lab researchers create Ludinger liquid plasmons in metallic SWNTs July 28th, 2015

Researchers predict material with record-setting melting point July 27th, 2015

Reshaping the solar spectrum to turn light to electricity: UC Riverside researchers find a way to use the infrared region of the sun's spectrum to make solar cells more efficient July 27th, 2015

Nanomedicine

Stretching the limits on conducting wires July 25th, 2015

UT Dallas nanotechnology research leads to super-elastic conducting fibers July 24th, 2015

Nanopaper as an optical sensing platform July 23rd, 2015

Albany College of Pharmacy and Health Sciences to Host One Week Symposium on Nanomedicine July 23rd, 2015

Discoveries

Controlling phase changes in solids: Controlling phase changes in solids July 29th, 2015

New computer model could explain how simple molecules took first step toward life: Two Brookhaven researchers developed theoretical model to explain the origins of self-replicating molecules July 28th, 2015

Short wavelength plasmons observed in nanotubes: Berkeley Lab researchers create Ludinger liquid plasmons in metallic SWNTs July 28th, 2015

'Seeing' molecular interactions could give boost to organic electronics July 28th, 2015

Announcements

Controlling phase changes in solids: Controlling phase changes in solids July 29th, 2015

Perfect Optical Properties in Production of Aluminum Oxide Colloid Nanoparticles July 28th, 2015

Short wavelength plasmons observed in nanotubes: Berkeley Lab researchers create Ludinger liquid plasmons in metallic SWNTs July 28th, 2015

'Seeing' molecular interactions could give boost to organic electronics July 28th, 2015

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

UT Dallas nanotechnology research leads to super-elastic conducting fibers July 24th, 2015

Leti and Diabeloop Project Aims at Developing Artificial Pancreas for Diabetes Treatment July 22nd, 2015

Rice University finding could lead to cheap, efficient metal-based solar cells: Plasmonics study suggests how to maximize production of 'hot electrons' July 22nd, 2015

Smarter window materials can control light and energy July 22nd, 2015

Research partnerships

Spintronics: Molecules stabilizing magnetism: Organic molecules fixing the magnetic orientation of a cobalt surface/ building block for a compact and low-cost storage technology/ publication in Nature Materials July 25th, 2015

Stretching the limits on conducting wires July 25th, 2015

Ultra-thin hollow nanocages could reduce platinum use in fuel cell electrodes July 24th, 2015

UT Dallas nanotechnology research leads to super-elastic conducting fibers July 24th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project