Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Quantum Chaos in Ultracold Gas Discovered

Even simple systems, such as neutral atoms, can possess chaotic behavior.Photo: Erbium Team, University of Innsbruck
Even simple systems, such as neutral atoms, can possess chaotic behavior.

Photo: Erbium Team, University of Innsbruck

Abstract:
The team of Francesca Ferlaino, University of Innsbruck, discovered that even simple systems, such as neutral atoms, can possess chaotic behavior, which can be revealed using the tools of quantum mechanics. The ground-breaking research, published in the journal Nature, opens up new avenues to observe the interaction between quantum particles.

Quantum Chaos in Ultracold Gas Discovered

Innsbruck, Austria | Posted on March 13th, 2014

The team of Francesca Ferlaino, Institute for Experimental Physics of the University of Innsbruck, Austria, has experimentally shown chaotic behavior of particles in a quantum gas. "For the first time we have been able to observe quantum chaos in the scattering behavior of ultracold atoms," says an excited Ferlaino. The physicists used random matrix theory to confirm their results, thus asserting the universal character of this statistical theory. Nobel laureate Eugene Wigner formulated random matrix theory to describe complex systems in the 1950s. Although interactions between neutrons with atomic nuclei were not well-known then, Wigner was able to reliably predict properties of complex spectra by using random matrices. Today random matrix theory is applied broadly not only in physics but also in number theory, wireless information technology and risk management models in finance to name only a few fields of application. In the Bohigas-Giannoni-Schmit conjecture random matrix theory has been connected to chaotic behavior in quantum mechanical systems. Catalan physicist Oriol Bohigas, who passed away last year, can be considered the father of quantum chaos research.

Chaos in the quantum world

To observe quantum chaos, the physicists in Innsbruck cool erbium atoms to a few hundred nanokelvin and load them in an optical dipole trap composed of laser beams. They then influence the scattering behavior of the particles by using a magnetic field. After holding the atoms in the trap for 400 milliseconds, the researchers record the atom number remaining in the trap. Thus, the scientists are able to determine at which magnetic field two atoms are coupled to form a weakly-bound molecule. At this magnetic field, so-called Fano-Feshbach resonances emerge. After varying the magnetic field in each experimental cycle and repeating the experiment 14,000 times, the physicists identified 200 resonances. "We were fascinated by how many resonances of this type we found. This is unprecedented in the physics of ultracold quantum gases," says Francesca Ferlaino's team member Albert Frisch. To explain the high density of resonances, the researchers used statistical methods. By using Wigner‘s random matrix theory the scientists are able to show that different molecular levels are coupled. This has also been confirmed by computer simulations conducted by Svetlana Kotochigova's research group at Temple University in Philadelphia, Pennsylvania, USA. "The particular properties of erbium cause a highly complex coupling behavior between the particles, which can be described as chaotic," explains Ferlaino. Erbium is relatively heavy and highly magnetic, which leads to anisotropic interaction between atoms. "The electron shell of these atoms do not resemble spherical shells but are highly deformed," explains Albert Frisch. "Therefore, the type of interaction between two erbium atoms is significantly different from other quantum gases that have been investigated so far."

Studying chaos experimentally

In contrast to everyday speech, chaos does not mean disorder for the physicists but rather a well-ordered system that, due to its complexity, shows random behavior. Ferlaino is excited about their breakthrough: "We have created an experiment that provides a controlled environment to study chaotic processes. We cannot characterize the behavior of single atoms in our experiment. However, by using statistical methods, we can describe the behavior of all particles." She compares the method with sociology, which studies the behavior of a bigger community of people, whereas psychology describes the relations between individuals. This work also provides new inroads to the investigation of ultracold gases and, thus, ultracold chemistry." Ferlaino is convinced: "Our work represents a turning point in the world of ultracold gases."

The experiment and statistical analysis were carried out at the Institute for Experimental Physics at the University of Innsbruck. Theoretical support was provided by John L. Bohn from the Joint Institute for Laboratory Astrophysics in Boulder, Colorado, USA and the team of Svetlana Kotochigova at Temple University in Philadelphia, Pennsylvania, USA. The Austrian researchers are supported by the Austrian Science Fund FWF and the European Research Council (ERC).

####

About University of Innsbruck
The University of Innsbruck was founded in 1669 and is one of Austria's oldest universities. Today, with almost 3,500 staff and 23,000 students, it is a place of learning that unifies tradition with future, progress and the joy of discovery. The University of Innsbruck is western Austria's largest institution of higher education and research and serves as major university for the regions of Tyrol, Vorarlberg and South Tyrol and the state of Liechtenstein. At their 15 faculties, scientist are researching and teaching in the various fields of Arts and Letters, Law, Social Sciences and Economics, Catholic Theology, Natural Sciences, Civil Engineering and Architecture.

For more information, please click here

Contacts:
Francesca Ferlaino
Institute for Experimental Physics
University of Innsbruck
+43 512 507 52440

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Full bibliographic information

Related News Press

News and information

Iran to Hold 3rd Int'l Engineering Materials, Metallurgy Conference October 25th, 2014

Haydale Secures Exclusive Development and Supply Agreement with Tantec A/S: New reactors to be built and commissioned by Tantec A/S represent another step forward towards the commercialisation of graphene October 24th, 2014

QuantumWise guides the semiconductor industry towards the atomic scale October 24th, 2014

SUNY Polytechnic Institute Invites the Public to Attend its Popular Statewide 'NANOvember' Series of Outreach and Educational Events October 23rd, 2014

Physics

Solid nanoparticles can deform like a liquid: Unexpected finding shows tiny particles keep their internal crystal structure while flexing like droplets October 12th, 2014

Unconventional photoconduction in an atomically thin semiconductor: New mechanism of photoconduction could lead to next-generation excitonic devices October 9th, 2014

Nanoparticles Break the Symmetry of Light October 6th, 2014

Quantum environmentalism: Putting a qubit's surroundings to good use October 2nd, 2014

Govt.-Legislation/Regulation/Funding/Policy

Novel Rocket Design Flight Tested: New Rocket Propellant and Motor Design Offers High Performance and Safety October 23rd, 2014

Strengthening thin-film bonds with ultrafast data collection October 23rd, 2014

Brookhaven Lab Launches Computational Science Initiative:Leveraging computational science expertise and investments across the Laboratory to tackle "big data" challenges October 22nd, 2014

Bipolar Disorder Discovery at the Nano Level: Tiny structures found in brain synapses help scientists better understand disorder October 22nd, 2014

Discoveries

QuantumWise guides the semiconductor industry towards the atomic scale October 24th, 2014

Iranian, Malaysian Scientists Study Nanophotocatalysts for Water Purification October 23rd, 2014

Nanoparticle technology triples the production of biogas October 23rd, 2014

Strengthening thin-film bonds with ultrafast data collection October 23rd, 2014

Announcements

Iran to Hold 3rd Int'l Engineering Materials, Metallurgy Conference October 25th, 2014

Haydale Secures Exclusive Development and Supply Agreement with Tantec A/S: New reactors to be built and commissioned by Tantec A/S represent another step forward towards the commercialisation of graphene October 24th, 2014

QuantumWise guides the semiconductor industry towards the atomic scale October 24th, 2014

Strengthening thin-film bonds with ultrafast data collection October 23rd, 2014

Quantum nanoscience

NIST quantum probe enhances electric field measurements October 8th, 2014

Quantum environmentalism: Putting a qubit's surroundings to good use October 2nd, 2014

Rice launches Center for Quantum Materials: RCQM will immerse global visitors in cross-disciplinary research September 30th, 2014

Big Results Require Big Ambitions: Three young UCSB faculty receive CAREER awards from the National Science Foundation September 18th, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE