Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Leti Demonstrates Ultra-scaled Self-aligned Split-gate Memory Cell With 16nm Gate Length: Benefits Especially for Contactless Applications Include Larger Memory Window, Improved Control of Spacer Memory Gate Shape and Length, And Better Functionality

TEM images of ultra-scaled self-aligned split-gate device, with a memory gate length of 16nm.
TEM images of ultra-scaled self-aligned split-gate device, with a memory gate length of 16nm.

Abstract:
CEA-Leti announced today it has fabricated ultra-scaled split-gate memories with gate length of 16nm, and demonstrated their functionality, showing good writing and erasing performances with memory windows over 6V.

Leti Demonstrates Ultra-scaled Self-aligned Split-gate Memory Cell With 16nm Gate Length: Benefits Especially for Contactless Applications Include Larger Memory Window, Improved Control of Spacer Memory Gate Shape and Length, And Better Functionality

Grenoble, France | Posted on March 13th, 2014

The devices provide several benefits especially for contactless memory applications, such as enlargement of the memory window and increased functionality. Also because of an optimised fabrication step, the devices allow better control of spacer memory gate shape and length.

Split-gate flash memories are made of two transistors: an access transistor and a memory transistor with a charge-trapping layer (nitride, Si nanocrystals etc.). Split-gate architectures use a low-access voltage and minimize drain current during programming, which leads to a decrease of the programming power compared to standard one-transistor NOR memories. Because programming energy decreases when memory gate length decreases, ultra-scaling is particularly relevant for contactless applications.

Memory gate has been reduced down to 16nm thanks to a poly-Si spacer formed on the sidewall of the select transistor. This approach avoids costly lithography steps during fabrication and solves misalignment issues, which are responsible for a strong variation of the electrical performances, such as the memory window.

The main challenges of this self-aligned technology concern the precise control of the spacer memory gate shape and of the memory gate length. Spacer gate has to fulfil two difficult requirements: being as flat as possible in order to get a silicidation surface as large as possible while insuring a functional contact, and getting a steep edge in order to control the drain-junction doping.

####

About CEA-Leti
By creating innovation and transferring it to industry, Leti is the bridge between basic research and production of micro- and nanotechnologies that improve the lives of people around the world. Backed by its portfolio of 2,200 patents, Leti partners with large industrials, SMEs and startups to tailor advanced solutions that strengthen their competitive positions. It has launched more than 50 startups. Its 8,000m² of new-generation cleanroom space feature 200mm and 300mm wafer processing of micro and nano solutions for applications ranging from space to smart devices. Leti’s staff of more than 1,700 includes 200 assignees from partner companies. Leti is based in Grenoble, France, and has offices in Silicon Valley, Calif., and Tokyo.

For more information, please click here

Contacts:
CEA-Leti
+33 4 38 78 02 26


Agency
+33 6 64 52 81 10

Copyright © CEA-Leti

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New solar power material converts 90 percent of captured light into heat: SunShot Project aims to make solar cost competitive October 29th, 2014

Tiny carbon nanotube pores make big impact October 29th, 2014

Microrockets fueled by water neutralize chemical and biological warfare agents October 29th, 2014

Nanosafety research – there’s room for improvement October 29th, 2014

Chip Technology

Sussex physicists find simple solution for quantum technology challenge October 28th, 2014

Watching the hidden life of materials: Ultrafast electron diffraction experiments open a new window on the microscopic world October 27th, 2014

Breakthrough in molecular electronics paves the way for DNA-based computer circuits in the future: DNA-based programmable circuits could be more sophisticated, cheaper and simpler to make October 27th, 2014

QuantumWise guides the semiconductor industry towards the atomic scale October 24th, 2014

Memory Technology

Strengthening thin-film bonds with ultrafast data collection October 23rd, 2014

Superconducting circuits, simplified: New circuit design could unlock the power of experimental superconducting computer chips October 18th, 2014

Future computers could be built from magnetic 'tornadoes' October 14th, 2014

Research mimics brain cells to boost memory power September 30th, 2014

Announcements

New solar power material converts 90 percent of captured light into heat: SunShot Project aims to make solar cost competitive October 29th, 2014

Tiny carbon nanotube pores make big impact October 29th, 2014

Microrockets fueled by water neutralize chemical and biological warfare agents October 29th, 2014

Nanosafety research – there’s room for improvement October 29th, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE