Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Creating a graphene-metal sandwich to improve electronics: UC Riverside and University of Manchester researchers combine graphene and copper in hopes of shrinking electronics

From left: (1) copper before any processing, (2) copper after thermal processing; (3) copper after adding graphene.
From left: (1) copper before any processing, (2) copper after thermal processing; (3) copper after adding graphene.

Abstract:
Researchers have discovered that creating a graphene-copper-graphene "sandwich" strongly enhances the heat conducting properties of copper, a discovery that could further help in the downscaling of electronics.

Creating a graphene-metal sandwich to improve electronics: UC Riverside and University of Manchester researchers combine graphene and copper in hopes of shrinking electronics

Riverside, CA | Posted on March 13th, 2014

The work was led by Alexander A. Balandin, a professor of electrical engineering at the Bourns College of Engineering at the University of California, Riverside and Konstantin S. Novoselov, a professor of physics at the University of Manchester in the United Kingdom. Balandin and Novoselov are corresponding authors for the paper just published in the journal Nano Letters. In 2010, Novoselov shared the Nobel Prize in Physics with Andre Geim for their discovery of graphene.

In the experiments, the researchers found that adding a layer of graphene, a one-atom thick material with highly desirable electrical, thermal and mechanical properties, on each side of a copper film increased heat conducting properties up to 24 percent.

"This enhancement of copper's ability to conduct heat could become important in the development of hybrid copper — graphene interconnects for electronic chips that continue to get smaller and smaller," said Balandin, who in 2013 was awarded the MRS Medal from the Materials Research Society for discovery of unusual heat conduction properties of graphene.

Whether the heat conducting properties of copper would improve by layering it with graphene is an important question because copper is the material used for semiconductor interconnects in modern computer chips. Copper replaced aluminum because of its better electrical conductivity.

Downscaling the size of transistors and interconnects and increasing the number of transistors on computer chips has put an enormous strain on copper's interconnect performance, to the point where there is little room for further improvement. For that reason there is a strong motivation to develop hybrid interconnect structures that can better conduct electrical current and heat.


In the experiments conducted by Balandin and the other researchers, they were surprised that the improvement of thermal properties of graphene coated copper films was significant despite the fact that graphene's thickness is only one atom. The puzzle was solved after they realized the improvement is the result of changes in copper's nano- and microstructure, not from graphene's action as an additional heat conducting channel.

After examining the grain sizes in copper before and after adding graphene, the researcher found that chemical vapor deposition of graphene conducted at high temperature stimulates grain size growth in copper films. The larger grain sizes in copper coated with graphene results in better heat conduction.

Additionally, the researchers found that the heat conduction improvement by adding graphene was more pronounced in thinner copper films. This is significant because the enhancement should further improve as future copper interconnects scale down to the nanometers-range, which is 1/1000thof the micrometer range.

In the future, Balandin and the team would like to investigate how heat conduction properties change in nanometer-thick copper films coated with graphene. They also plan to develop a more accurate theoretical model to explain how thermal conductivity scales with the grain sizes.

In addition to Balandin and Novoselov, co-authors of the Nano Letters paper, "Thermal Properties of Graphene-Copper-Graphene Heterogeneous Films," were: Pradyumna Goli, a post-doctoral student in Balandin's lab and Hao Ning, Xuesong Li and Ching Yu Lu, all of whom work for Bluestone Global Tech in Wappingers Falls, NY.

The work at UC Riverside on this project was supported by the National Science Foundation and by STARnet Center for Function Accelerated nanoMaterial Engineering (FAME), a Semiconductor Research Corporation (SRC) program sponsored by Microelectronics Advanced Research Corporation (MARCO) and Defense Advanced Research Projects Agency (DARPA).

####

For more information, please click here

Contacts:
Sean Nealon

951-827-1287
Twitter: seannealon

ADDITIONAL CONTACTS
Alexander Balandin
E-mail:

Copyright © University of California - Riverside

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

East China University of Science and Technology Purchases Nanonex Advanced Nanoimprint Tool NX-B200 July 30th, 2014

Watching Schrödinger's cat die (or come to life): Steering quantum evolution & using probes to conduct continuous error correction in quantum computers July 30th, 2014

From Narrow to Broad July 30th, 2014

FLAG-ERA and TNT2014 join efforts: Graphene Networking at its higher level in Barcelona: Encourage the participation in a joint transnational call July 30th, 2014

New Objective Focusing Nanopositioner from nPoint July 30th, 2014

Graphene

FLAG-ERA and TNT2014 join efforts: Graphene Networking at its higher level in Barcelona: Encourage the participation in a joint transnational call July 30th, 2014

Tough foam from tiny sheets: Rice University lab uses atom-thick materials to make ultralight foam July 29th, 2014

Govt.-Legislation/Regulation/Funding/Policy

New imaging agent provides better picture of the gut July 30th, 2014

Watching Schrödinger's cat die (or come to life): Steering quantum evolution & using probes to conduct continuous error correction in quantum computers July 30th, 2014

Nature inspires a greener way to make colorful plastics July 30th, 2014

Tough foam from tiny sheets: Rice University lab uses atom-thick materials to make ultralight foam July 29th, 2014

Chip Technology

Nanometrics Reports Second Quarter 2014 Financial Results July 30th, 2014

A*STAR and industry form S$200M semiconductor R&D July 25th, 2014

A Crystal Wedding in the Nanocosmos July 23rd, 2014

Penn Study: Understanding Graphene’s Electrical Properties on an Atomic Level July 22nd, 2014

Discoveries

New imaging agent provides better picture of the gut July 30th, 2014

Watching Schrödinger's cat die (or come to life): Steering quantum evolution & using probes to conduct continuous error correction in quantum computers July 30th, 2014

From Narrow to Broad July 30th, 2014

A new way to make microstructured surfaces: Method can produce strong, lightweight materials with specific surface properties July 29th, 2014

Announcements

University of Manchester selects Anasys AFM-IR for coatings and corrosion research July 30th, 2014

Nature inspires a greener way to make colorful plastics July 30th, 2014

Analytical solutions from Malvern Instruments support University of Wisconsin-Milwaukee researchers in understanding environmental effects of nanomaterials July 30th, 2014

FEI Unveils New Solutions for Faster Time-to-Analysis in Metals Research July 30th, 2014

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals

Watching Schrödinger's cat die (or come to life): Steering quantum evolution & using probes to conduct continuous error correction in quantum computers July 30th, 2014

From Narrow to Broad July 30th, 2014

Nature inspires a greener way to make colorful plastics July 30th, 2014

A new way to make microstructured surfaces: Method can produce strong, lightweight materials with specific surface properties July 29th, 2014

Military

New imaging agent provides better picture of the gut July 30th, 2014

Watching Schrödinger's cat die (or come to life): Steering quantum evolution & using probes to conduct continuous error correction in quantum computers July 30th, 2014

Tough foam from tiny sheets: Rice University lab uses atom-thick materials to make ultralight foam July 29th, 2014

A new way to make microstructured surfaces: Method can produce strong, lightweight materials with specific surface properties July 29th, 2014

Research partnerships

New imaging agent provides better picture of the gut July 30th, 2014

Breakthrough laser experiment reveals liquid-like motion of atoms in an ultra-cold cluster: University of Leicester research team unlocks insights into creation of new nano-materials July 25th, 2014

A*STAR and industry form S$200M semiconductor R&D July 25th, 2014

A Crystal Wedding in the Nanocosmos July 23rd, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE