Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Creating a graphene-metal sandwich to improve electronics: UC Riverside and University of Manchester researchers combine graphene and copper in hopes of shrinking electronics

From left: (1) copper before any processing, (2) copper after thermal processing; (3) copper after adding graphene.
From left: (1) copper before any processing, (2) copper after thermal processing; (3) copper after adding graphene.

Abstract:
Researchers have discovered that creating a graphene-copper-graphene "sandwich" strongly enhances the heat conducting properties of copper, a discovery that could further help in the downscaling of electronics.

Creating a graphene-metal sandwich to improve electronics: UC Riverside and University of Manchester researchers combine graphene and copper in hopes of shrinking electronics

Riverside, CA | Posted on March 13th, 2014

The work was led by Alexander A. Balandin, a professor of electrical engineering at the Bourns College of Engineering at the University of California, Riverside and Konstantin S. Novoselov, a professor of physics at the University of Manchester in the United Kingdom. Balandin and Novoselov are corresponding authors for the paper just published in the journal Nano Letters. In 2010, Novoselov shared the Nobel Prize in Physics with Andre Geim for their discovery of graphene.

In the experiments, the researchers found that adding a layer of graphene, a one-atom thick material with highly desirable electrical, thermal and mechanical properties, on each side of a copper film increased heat conducting properties up to 24 percent.

"This enhancement of copper's ability to conduct heat could become important in the development of hybrid copper graphene interconnects for electronic chips that continue to get smaller and smaller," said Balandin, who in 2013 was awarded the MRS Medal from the Materials Research Society for discovery of unusual heat conduction properties of graphene.

Whether the heat conducting properties of copper would improve by layering it with graphene is an important question because copper is the material used for semiconductor interconnects in modern computer chips. Copper replaced aluminum because of its better electrical conductivity.

Downscaling the size of transistors and interconnects and increasing the number of transistors on computer chips has put an enormous strain on copper's interconnect performance, to the point where there is little room for further improvement. For that reason there is a strong motivation to develop hybrid interconnect structures that can better conduct electrical current and heat.


In the experiments conducted by Balandin and the other researchers, they were surprised that the improvement of thermal properties of graphene coated copper films was significant despite the fact that graphene's thickness is only one atom. The puzzle was solved after they realized the improvement is the result of changes in copper's nano- and microstructure, not from graphene's action as an additional heat conducting channel.

After examining the grain sizes in copper before and after adding graphene, the researcher found that chemical vapor deposition of graphene conducted at high temperature stimulates grain size growth in copper films. The larger grain sizes in copper coated with graphene results in better heat conduction.

Additionally, the researchers found that the heat conduction improvement by adding graphene was more pronounced in thinner copper films. This is significant because the enhancement should further improve as future copper interconnects scale down to the nanometers-range, which is 1/1000thof the micrometer range.

In the future, Balandin and the team would like to investigate how heat conduction properties change in nanometer-thick copper films coated with graphene. They also plan to develop a more accurate theoretical model to explain how thermal conductivity scales with the grain sizes.

In addition to Balandin and Novoselov, co-authors of the Nano Letters paper, "Thermal Properties of Graphene-Copper-Graphene Heterogeneous Films," were: Pradyumna Goli, a post-doctoral student in Balandin's lab and Hao Ning, Xuesong Li and Ching Yu Lu, all of whom work for Bluestone Global Tech in Wappingers Falls, NY.

The work at UC Riverside on this project was supported by the National Science Foundation and by STARnet Center for Function Accelerated nanoMaterial Engineering (FAME), a Semiconductor Research Corporation (SRC) program sponsored by Microelectronics Advanced Research Corporation (MARCO) and Defense Advanced Research Projects Agency (DARPA).

####

For more information, please click here

Contacts:
Sean Nealon

951-827-1287
Twitter: seannealon

ADDITIONAL CONTACTS
Alexander Balandin
E-mail:

Copyright © University of California - Riverside

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Iran to Hold 3rd Int'l Engineering Materials, Metallurgy Conference October 25th, 2014

Haydale Secures Exclusive Development and Supply Agreement with Tantec A/S: New reactors to be built and commissioned by Tantec A/S represent another step forward towards the commercialisation of graphene October 24th, 2014

QuantumWise guides the semiconductor industry towards the atomic scale October 24th, 2014

SUNY Polytechnic Institute Invites the Public to Attend its Popular Statewide 'NANOvember' Series of Outreach and Educational Events October 23rd, 2014

Strengthening thin-film bonds with ultrafast data collection October 23rd, 2014

Graphene

Haydale Secures Exclusive Development and Supply Agreement with Tantec A/S: New reactors to be built and commissioned by Tantec A/S represent another step forward towards the commercialisation of graphene October 24th, 2014

Govt.-Legislation/Regulation/Funding/Policy

Novel Rocket Design Flight Tested: New Rocket Propellant and Motor Design Offers High Performance and Safety October 23rd, 2014

Strengthening thin-film bonds with ultrafast data collection October 23rd, 2014

Brookhaven Lab Launches Computational Science Initiative:Leveraging computational science expertise and investments across the Laboratory to tackle "big data" challenges October 22nd, 2014

Bipolar Disorder Discovery at the Nano Level: Tiny structures found in brain synapses help scientists better understand disorder October 22nd, 2014

Chip Technology

QuantumWise guides the semiconductor industry towards the atomic scale October 24th, 2014

Strengthening thin-film bonds with ultrafast data collection October 23rd, 2014

NIST offers electronics industry 2 ways to snoop on self-organizing molecules October 22nd, 2014

Materials for the next generation of electronics and photovoltaics: MacArthur Fellow develops new uses for carbon nanotubes October 21st, 2014

Discoveries

QuantumWise guides the semiconductor industry towards the atomic scale October 24th, 2014

Iranian, Malaysian Scientists Study Nanophotocatalysts for Water Purification October 23rd, 2014

Nanoparticle technology triples the production of biogas October 23rd, 2014

Strengthening thin-film bonds with ultrafast data collection October 23rd, 2014

Announcements

Iran to Hold 3rd Int'l Engineering Materials, Metallurgy Conference October 25th, 2014

Haydale Secures Exclusive Development and Supply Agreement with Tantec A/S: New reactors to be built and commissioned by Tantec A/S represent another step forward towards the commercialisation of graphene October 24th, 2014

QuantumWise guides the semiconductor industry towards the atomic scale October 24th, 2014

Strengthening thin-film bonds with ultrafast data collection October 23rd, 2014

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals

NYU Researchers Break Nano Barrier to Engineer the First Protein Microfiber October 23rd, 2014

Iranian Scientists Apply Nanotechnology to Produce Surgery Suture October 23rd, 2014

Iranian, Malaysian Scientists Study Nanophotocatalysts for Water Purification October 23rd, 2014

Strengthening thin-film bonds with ultrafast data collection October 23rd, 2014

Military

NanoTechnology for Defense (NT4D) October 22nd, 2014

Crystallizing the DNA nanotechnology dream: Scientists have designed the first large DNA crystals with precisely prescribed depths and complex 3D features, which could create revolutionary nanodevices October 20th, 2014

Imaging electric charge propagating along microbial nanowires October 20th, 2014

1980s aircraft helps quantum technology take flight October 20th, 2014

Research partnerships

NYU Researchers Break Nano Barrier to Engineer the First Protein Microfiber October 23rd, 2014

Nanoparticle technology triples the production of biogas October 23rd, 2014

RF Heating of Magnetic Nanoparticles Improves the Thawing of Cryopreserved Biomaterials October 23rd, 2014

Brookhaven Lab Launches Computational Science Initiative:Leveraging computational science expertise and investments across the Laboratory to tackle "big data" challenges October 22nd, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE