Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Tiny Origami Boxes Hold Big Promise for Hydrogen Energy Storage: Graphene folds itself into programmable "nanocage" for hydrogen storage, beating DOE 2020 goal

A sheet of carbon atoms folds by applying water along the red lines, then can be used to store hydrogen atoms, say mechanical engineers at the University of Maryland.
A sheet of carbon atoms folds by applying water along the red lines, then can be used to store hydrogen atoms, say mechanical engineers at the University of Maryland.

Abstract:
Just when you thought your origami skills couldn't be beat - try using the world's thinnest material, making the origami fold and unfold itself, and packing more inside than anyone expected. Researchers from the University of Maryland have done just that.



A sheet of carbon atoms folds itself into a box that opens and closes as an electric field is applied. This graphene "nanocage" could hold high densities of hydrogen for energy storage, say its inventors in the department of mechanical engineering at the University of Maryland.

Credit: Maryland NanoCenter

Tiny Origami Boxes Hold Big Promise for Hydrogen Energy Storage: Graphene folds itself into programmable "nanocage" for hydrogen storage, beating DOE 2020 goal

College Park, MD | Posted on March 12th, 2014

Graphene is the world's thinnest material, just one atom thick. Mechanical engineers Shuze Zhu and Teng Li have found that they can make tiny squares of graphene fold into a box, which will open and close itself in response to an electric charge.

Inside the box, they've tucked hydrogen atoms, and have done so more efficiently than was thought possible. The U.S. Department of Energy is searching for ways to make storing energy with hydrogen a practical possibility, and they set up some goals: by 2017, the Department had hoped that a research team could pack in 5.5 percent hydrogen by weight, and that by 2020, it could be stretched to 7.5 percent.

Li's team has already crossed that threshold, with a hydrogen storage density of 9.5 percent hydrogen by weight. The team has also demonstrated the potential to reach an even higher density, a future research goal.

"Just like paper origami that can make complicated 3-D structures from 2-D paper, graphene origami allows us to design and fabricate carbon nanostructures that are not naturally existing but of desirable properties," said Li. "We have made nano-baskets, as well as these new nano-cages to hold hydrogen and other molecular cargos."

The U.S. National Science Foundation supported the team's research, which will be published in the journal ACS Nano.

####

About University of Maryland
The University of Maryland is the state's flagship university and one of the nation's preeminent public research universities. A global leader in research, entrepreneurship and innovation, the university is home to more than 37,000 students, 9,000 faculty and staff, and 250 academic programs. Its faculty includes three Nobel laureates, two Pulitzer Prize winners, 49 members of the national academies and scores of Fulbright scholars. The institution has a $1.8 billion operating budget, secures $500 million annually in external research funding and recently completed a $1 billion dollar fundraising campaign.

For more information, please click here

Contacts:
Martha Heil
301-405-0876

Maryland Nanocenter
University of Maryland

Copyright © University of Maryland

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Hydrogenation-Assisted Graphene Origami and Its Application in Programmable Molecular Mass Uptake, Storage, and Release

Related News Press

News and information

Nanoscale view of energy storage January 16th, 2017

Seeing the quantum future... literally: What if big data could help you see the future and prevent your mobile phone from breaking before it happened? January 16th, 2017

NUS researchers achieve major breakthrough in flexible electronics: New classes of printable electrically conducting polymer materials make better electrodes for plastic electronics and advanced semiconductor devices January 14th, 2017

Manchester scientists tie the tightest knot ever achieved January 13th, 2017

Graphene/ Graphite

Researchers design one of the strongest, lightest materials known: Porous, 3-D forms of graphene developed at MIT can be 10 times as strong as steel but much lighter January 7th, 2017

Nano-chimneys can cool circuits: Rice University scientists calculate tweaks to graphene would form phonon-friendly cones January 4th, 2017

First use of graphene to detect cancer cells: System able to detect activity level of single interfaced cell December 20th, 2016

New graphene-based system could help us see electrical signaling in heart and nerve cells: Berkeley-Stanford team creates a system to visualize faint electric fields December 19th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Nanoscale view of energy storage January 16th, 2017

Chemistry on the edge: Experiments at Berkeley Lab confirm that structural defects at the periphery are key in catalyst function January 13th, 2017

Recreating conditions inside stars with compact lasers: Scientists offer a new path to creating the extreme conditions found in stars, using ultra-short laser pulses irradiating nanowires January 12th, 2017

New laser based on unusual physics phenomenon could improve telecommunications, computing January 12th, 2017

Discoveries

Nanoscale view of energy storage January 16th, 2017

Seeing the quantum future... literally: What if big data could help you see the future and prevent your mobile phone from breaking before it happened? January 16th, 2017

NUS researchers achieve major breakthrough in flexible electronics: New classes of printable electrically conducting polymer materials make better electrodes for plastic electronics and advanced semiconductor devices January 14th, 2017

Nanoscale Modifications can be used to Engineer Electrical Contacts for Nanodevices January 13th, 2017

Announcements

Nanoscale view of energy storage January 16th, 2017

Seeing the quantum future... literally: What if big data could help you see the future and prevent your mobile phone from breaking before it happened? January 16th, 2017

NUS researchers achieve major breakthrough in flexible electronics: New classes of printable electrically conducting polymer materials make better electrodes for plastic electronics and advanced semiconductor devices January 14th, 2017

Nanoscale Modifications can be used to Engineer Electrical Contacts for Nanodevices January 13th, 2017

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Nanoscale view of energy storage January 16th, 2017

Seeing the quantum future... literally: What if big data could help you see the future and prevent your mobile phone from breaking before it happened? January 16th, 2017

NUS researchers achieve major breakthrough in flexible electronics: New classes of printable electrically conducting polymer materials make better electrodes for plastic electronics and advanced semiconductor devices January 14th, 2017

Nanoscale Modifications can be used to Engineer Electrical Contacts for Nanodevices January 13th, 2017

Energy

Stability challenge in perovskite solar cell technology: New research reveals intrinsic instability issues of iodine-containing perovskite solar cells December 26th, 2016

Nanoscale 'conversations' create complex, multi-layered structures: New technique leverages controlled interactions across surfaces to create self-assembled materials with unprecedented complexity December 22nd, 2016

Safe and inexpensive hydrogen production as a future energy source: Osaka University researchers develop efficient 'green' hydrogen production system that operates at room temperature in air December 21st, 2016

Going green with nanotechnology December 21st, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project