Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Atomically Thin Solar Cells

Microscope photograph of WSe2-samples, connected to electrodes
Microscope photograph of WSe2-samples, connected to electrodes

Abstract:
It does not get any thinner than this: The novel material graphene consists of only one atomic layer of carbon atoms and exhibits very special electronic properties. As it turns out, there are other materials too, which can open up intriguing new technological possibilities if they are arranged in just one or very few atomic layers. Researchers at the Vienna University of Technology have now succeeded for the first time in creating a diode made of tungsten diselenide. Experiments show that this material may be used to create ultrathin flexible solar cells. Even flexible displays could become possible.

Atomically Thin Solar Cells

Vienna, Austria | Posted on March 11th, 2014

Thin Layers are Different

At least since the Nobel Prize in physics was awarded in 2010 for creating graphene, the "two dimensional crystals" made of carbon atoms have been regarded as one of the most promising materials in electronics. In 2013, graphene research was chosen by the EU as a flagship-project, with a funding of one billion euros. Graphene can sustain extreme mechanical strain and it has great opto-electronic properties. With graphene as a light detector, optical signals can be transformed into electric pulses on extremely short timescales.

For one very similar application, however, graphene is not well suited for building solar cells. "The electronic states in graphene are not very practical for creating photovoltaics", says Thomas Mueller. Therefore, he and his team started to look for other materials, which, similarly to graphene, can arranged in ultrathin layers, but have even better electronic properties.

The material of choice was tungsten diselenide: It consists of one layer of tungsten atoms, which are connected by selenium atoms above and below the tungsten plane. The material absorbs light, much like graphene, but in tungsten diselenide, this light can be used to create electrical power.

The World's Thinnest Solar Cells

The layer is so thin that 95% of the light just passes through - but a tenth of the remaining five percent, which are absorbed by the material, are converted into electrical power. Therefore, the internal efficiency is quite high. A larger portion of the incident light can be used if several of the ultrathin layers are stacked on top of each other - but sometimes the high transparency can be a useful side effect. "We are envisioning solar cell layers on glass facades, which let part of the light into the building while at the same time creating electricity", says Thomas Mueller.

Today, standard solar cells are mostly made of silicon, they are rather bulky and inflexible. Organic materials are also used for opto-electronic applications, but they age rather quickly. "A big advantage of two-dimensional structures of single atomic layers is their crystallinity. Crystal structures lend stability", says Thomas Mueller.

The results of the experiments at the Vienna University of Technology have now been published in the journal "Nature Nanotechnology". The research field is extremely competitive: in the same issue of the journal, two more papers are published, in which very similar results are shown. Researchers at the MIT (Cambridge, USA) and at the University of Washington (Seattle, USA) have also discovered the great advantages of tungsten diselenide. There seems to be little doubt that this material will soon play an important role in materials science all over the world, much like graphene has in the last couple of years.

Full bibliographic information
Solar-energy conversion and light emission in an atomic monolayer p-n diode, Andreas Pospischil, Marco M. Furchi, Thomas Mueller, Nature Nanotechnology (2014) doi:10.1038/nnano.2014.14.

####

About Vienna University of Technology, TU Vienna
With its eight faculties - mathematics and geo-information, physics, technical chemistry, informatics, civil engineering, architecture and regional planning, mechanical engineering and business science, electrical engineering and information technology – the Vienna University of Technology covers the classic engineering disciplines.

The TU Vienna has a great pool of specialists who are acting in a wide range of different topics in research, teaching and as partners of the economy. More than 2000 scientists do their research and teaching at highly advanced and modern institutes – in summary about 70. Although fundamental research has priority at the TU Vienna applied research is also done. Moreover services are offered as high-tech problem solving and examination expertise for industry and economy. Innovation orientated companies are highly interested in co-operating with the Vienna University of Technology because of its high-tech and high-quality research and its openness for requests of the economy.

The Vienna University of Technology puts great emphasis on co-operation between its own institutes as well as with other universities. Therefore the TU Vienna participates in several European Union (EU) and other research programmes.

The aim of the university was and still is to belong to the best. The effort to reach this aim is also expressed in its mission statement: With the aim of providing technology for people, our mission is to develop scientific excellence and wide-ranging competence in our students.

For more information, please click here

Contacts:
Bettina Neunteufl
+43 (1) 58801 41025


Further Information:
Prof. Thomas Müller
Photonics Institute
Vienna University of Technology
Gusshausstraße 27-29, 1040 Vienna
T: +43-1-58801-38739

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Graphene/ Graphite

ICN2 researchers compute unprecedented values for spin lifetime anisotropy in graphene November 17th, 2017

News and information

ICN2 researchers compute unprecedented values for spin lifetime anisotropy in graphene November 17th, 2017

Math gets real in strong, lightweight structures: Rice University researchers use 3-D printers to turn century-old theory into complex schwarzites November 16th, 2017

The stacked color sensor: True colors meet minimization November 16th, 2017

Nanometrics to Participate in the 6th Annual NYC Investor Summit 2017 November 16th, 2017

Discoveries

ICN2 researchers compute unprecedented values for spin lifetime anisotropy in graphene November 17th, 2017

Math gets real in strong, lightweight structures: Rice University researchers use 3-D printers to turn century-old theory into complex schwarzites November 16th, 2017

The stacked color sensor: True colors meet minimization November 16th, 2017

Counterfeits and product piracy can be prevented by security features, such as printed 3-D microstructures: Forgeries and product piracy are detrimental to society and industry -- 3-D microstructures can increase security -- KIT researchers develop innovative fluorescent 3-D stru November 15th, 2017

Announcements

ICN2 researchers compute unprecedented values for spin lifetime anisotropy in graphene November 17th, 2017

Math gets real in strong, lightweight structures: Rice University researchers use 3-D printers to turn century-old theory into complex schwarzites November 16th, 2017

The stacked color sensor: True colors meet minimization November 16th, 2017

Nanometrics to Participate in the 6th Annual NYC Investor Summit 2017 November 16th, 2017

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

ICN2 researchers compute unprecedented values for spin lifetime anisotropy in graphene November 17th, 2017

Math gets real in strong, lightweight structures: Rice University researchers use 3-D printers to turn century-old theory into complex schwarzites November 16th, 2017

The stacked color sensor: True colors meet minimization November 16th, 2017

Counterfeits and product piracy can be prevented by security features, such as printed 3-D microstructures: Forgeries and product piracy are detrimental to society and industry -- 3-D microstructures can increase security -- KIT researchers develop innovative fluorescent 3-D stru November 15th, 2017

Energy

Inorganic-organic halide perovskites for new photovoltaic technology November 6th, 2017

Dendritic fibrous nanosilica: all-in-one nanomaterial for energy, environment and health November 4th, 2017

New nanomaterial can extract hydrogen fuel from seawater: Hybrid material converts more sunlight and can weather seawater's harsh conditions October 4th, 2017

Researchers set time limit for ultrafast perovskite solar cells September 22nd, 2017

Solar/Photovoltaic

Inorganic-organic halide perovskites for new photovoltaic technology November 6th, 2017

New nanomaterial can extract hydrogen fuel from seawater: Hybrid material converts more sunlight and can weather seawater's harsh conditions October 4th, 2017

Researchers set time limit for ultrafast perovskite solar cells September 22nd, 2017

Copper catalyst yields high efficiency CO2-to-fuels conversion: Berkeley Lab scientists discover critical role of nanoparticle transformation September 20th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project