Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Production of Bioactive Material for Quick Treatment of Bone Damages

Abstract:
A bioactive and biocompatible material was designed and produced by engineers from Iran Polymer and Petrochemistry Research Center by using nanoparticles with the ability to quickly treat damaged bones.

Production of Bioactive Material for Quick Treatment of Bone Damages

Tehran, Iran | Posted on March 10th, 2014

In addition to having the advantages of other bioactive materials, this material is able to speed up the proliferation and differentiation of bone cells.

Although it has been proved that hydroxyapatite particles increase in-vitro cellular proliferation and differentiation, not many studies have so far been carried out on the effect of hydroxyapatite nanoparticles stabilized on the polymeric bed of poly hydroxy alkanoate on cellular responds. It is obvious that the determination of the effect of hydroxyapatite nanoparticles on the cellular behavior of poly hydroxy alkanoate polymeric bed is the first and the most important step in order to develop the applications of such nanocomposites.

Mehdi Sadat Shojayee, one of the researchers, elaborated on the purpose of the study. "In the present study, the objective was to synthesize a bioactive and biocompatible material that is able to speed up the proliferation and differentiation of bone cells in addition to having the advantages of other bioactive materials. Therefore, they can treat bone damages more quickly."

Significant modification in biological properties of poly hydroxy alkanoate/ hydroxyapatite nanocomposites in comparison with that of the pure polymer may be one of the most important results of the research. Taking into consideration the fact that the synthesized nanocomposites have increased bioactivity and they trigger the proliferation of bone cells and the differentiation of pre-bone cells to mature bone cells at the same time, the application of these nanocomposites can increase significantly the treatment of bone in comparison with the traditional samples.

Results of the research have been published in Materials Science and Engineering C, vol. 33, issue 5, 1 July 2013. For more information about the details of the research, study the full article on pages 2776-2787 on the same journal.

####

For more information, please click here

Copyright © Fars News Agency

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Yale researchersí technology turns wasted heat into power June 27th, 2016

FEI Launches Helios G4 DualBeam Series for Materials Science: The Helios G4 DualBeam Series features new capabilities to enable scientists and engineers to answer the most demanding and challenging scientific questions June 27th, 2016

Russian physicists create a high-precision 'quantum ruler': Physicists have devised a method for creating a special quantum entangled state June 25th, 2016

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

Nanomedicine

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

Nanotechnology and math deliver two-in-one punch for cancer therapy resistance June 24th, 2016

Self-assembling icosahedral protein designed: Self-assembling icosahedral protein designed June 22nd, 2016

Stealth nanocapsules kill Chagas parasites in mouse models June 22nd, 2016

Discoveries

Yale researchersí technology turns wasted heat into power June 27th, 2016

Superheroes are real: Ultrasensitive nonlinear metamaterials for data transfer June 25th, 2016

Russian physicists create a high-precision 'quantum ruler': Physicists have devised a method for creating a special quantum entangled state June 25th, 2016

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

Announcements

Yale researchersí technology turns wasted heat into power June 27th, 2016

FEI Launches Helios G4 DualBeam Series for Materials Science: The Helios G4 DualBeam Series features new capabilities to enable scientists and engineers to answer the most demanding and challenging scientific questions June 27th, 2016

Russian physicists create a high-precision 'quantum ruler': Physicists have devised a method for creating a special quantum entangled state June 25th, 2016

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Yale researchersí technology turns wasted heat into power June 27th, 2016

Superheroes are real: Ultrasensitive nonlinear metamaterials for data transfer June 25th, 2016

Russian physicists create a high-precision 'quantum ruler': Physicists have devised a method for creating a special quantum entangled state June 25th, 2016

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic