Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > A bright future for optoelectronics: A diode made from a 2D material facilitates novel solar cells

A 2D Material opens up previously unimagined possibilities for solar cells, photodiodes and light-emitting diodes
A 2D Material opens up previously unimagined possibilities for solar cells, photodiodes and light-emitting diodes

Abstract:
A special type of diode made from a crystalline material whose layers are just three atoms thick has been successfully realized for the first time. The superior properties of such ultra-thin crystals open up previously unimagined possibilities for solar cells, photodiodes and light-emitting diodes. The paper, now published in Nature Nanotechnology, not only documents the actual functionality of a so-called p-n diode made of tungsten diselenide, it also demonstrates its usefulness for numerous applications. These findings, obtained through an Austrian Science Fund FWF project, thus constitute significant progress on the future path to 2D optoelectronics.

A bright future for optoelectronics: A diode made from a 2D material facilitates novel solar cells

Vienna, Austria | Posted on March 10th, 2014

Electronic devices require semiconductors. These are usually made from crystalline silicon. The state of the art here is the use of three-dimensional crystals. But these not only combine low flexibility with high weight - they are also expensive to manufacture. Alternative approaches - organic semiconductors and thin-film technologies - result, in turn, in materials with inferior quality and durability. Two-dimensional (2D) crystals - crystalline material layers with a thickness of just one or a few atoms - offer a better chance of success. They can be produced economically on a large scale and are flexible, yet still exhibit all the advantages of crystalline materials. Now a team from the Institute of Photonics at the Vienna University of Technology has succeeded in producing the first diode with a p-n junction from such 2D crystals - thus laying the foundation for radical changes in optoelectronics.

A GAP IN THE RESULT

The starting material used for this by the team working with Prof. Thomas Mueller was tungsten diselenide (WSe2). It has one major advantage over graphene, the most well-known 2D crystalline material at present, as Prof. Mueller explains: "Tungsten diselenide has a band gap - so electrons require a certain energy to cross over to the conduction band. Graphene can't easily provide this basic requirement for many electronic components." To ensure that WSe2 was actually present in the form of a 2D layer for the team's further work, it was mechanically "peeled" from three-dimensional crystals in such a way that layers having a thickness of just 0.7 nanometers were created. As Prof. Mueller explains: "We subsequently used complex procedures to check whether we had indeed succeeded in realizing 2D crystals, as only such thin layers exhibit the required properties." Spectroscopic analyses, optical contrast measurements and atomic force microscopy confirmed that the researchers had achieved the desired result. The monolayer WSe2 was then placed between two electrodes and the electrical characteristics were measured. This unambiguously confirmed its function as a p-n diode: it was possible to inject both positive (p, holes) and negative (n, electrons) charges, with current flow exclusively in one direction, as is usual in diodes.

THIN SUCCESS

"WSe2 in monolayer crystalline form is theoretically an ideal starting material for p-n diodes and optoelectronics - but no one had ever proven it before. We have now done just that. We measured an efficiency of 0.5 percent in converting light to electrical energy," says Prof. Mueller, explaining the first demonstration worldwide of the photovoltaic characteristics of a 2D crystalline material. The high transparency, at 95 percent, means it can even be used simultaneously as window glass and as a solar cell. However, it is also possible to stack several such ultra-thin layers one on top of another to increase the efficiency to as much as 10 percent - of course at the expense of transparency.

The material's functionality as a photodiode was also proven, achieving a sensitivity one order of magnitude higher than that of graphene. These properties are further enhanced by the ability to convert electrical energy to light.

Overall, the results of this FWF project offer impressive proof that WSe2 possesses superior optoelectronic properties that create new possibilities for solar cells, photodiodes and light-emitting diodes.

####

For more information, please click here

Contacts:
Scientific Contact:
Prof. Thomas Mueller
Vienna University of Technology
Photonics Institute
Gusshausstraße 27-29/E387
1040 Vienna, Austria
T +43 / 1 / 58801 - 38739
E

Austrian Science Fund FWF:
Mag. Stefan Bernhardt
Haus der Forschung
Sensengasse 1
1090 Vienna, Austria
T +43 / 1 / 505 67 40 - 8111
E
W http://www.fwf.ac.at

Copy Editing & Distribution:
PR&D - Public Relations for Research & Education
Mariannengasse 8
1090 Vienna, Austria
T +43 / 1 / 505 70 44
E
W http://www.prd.at

Copyright © Vienna University of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Original publication: A. Pospischil, M. M. Furchi, und T. Mueller, Solar-energy conversion and light emission in an atomic monolayer p-n diode, Nature Nanotechnology (2014):

Related News Press

News and information

Ultracold atom waves may shed light on rogue ocean killers: Rice quantum experiments probe underlying physics of rogue ocean waves April 27th, 2017

Looking for the quantum frontier: Beyond classical computing without fault-tolerance? April 27th, 2017

Metal nanoparticles induced visible-light photocatalysis: Mechanisms, applications, ways of promoting catalytic activity and outlook April 27th, 2017

Arrowhead Pharmaceuticals to Webcast Fiscal 2017 Second Quarter Results April 27th, 2017

Govt.-Legislation/Regulation/Funding/Policy

Ultracold atom waves may shed light on rogue ocean killers: Rice quantum experiments probe underlying physics of rogue ocean waves April 27th, 2017

Metal nanoparticles induced visible-light photocatalysis: Mechanisms, applications, ways of promoting catalytic activity and outlook April 27th, 2017

Graphene holds up under high pressure: Used in filtration membranes, ultrathin material could help make desalination more productive April 24th, 2017

Nanoparticle vaccine shows potential as immunotherapy to fight multiple cancer types April 24th, 2017

Discoveries

Ultracold atom waves may shed light on rogue ocean killers: Rice quantum experiments probe underlying physics of rogue ocean waves April 27th, 2017

Looking for the quantum frontier: Beyond classical computing without fault-tolerance? April 27th, 2017

Metal nanoparticles induced visible-light photocatalysis: Mechanisms, applications, ways of promoting catalytic activity and outlook April 27th, 2017

Geoffrey Beach: Drawn to explore magnetism: Materials researcher is working on the magnetic memory of the future April 25th, 2017

Announcements

Ultracold atom waves may shed light on rogue ocean killers: Rice quantum experiments probe underlying physics of rogue ocean waves April 27th, 2017

Looking for the quantum frontier: Beyond classical computing without fault-tolerance? April 27th, 2017

Metal nanoparticles induced visible-light photocatalysis: Mechanisms, applications, ways of promoting catalytic activity and outlook April 27th, 2017

Arrowhead Pharmaceuticals to Webcast Fiscal 2017 Second Quarter Results April 27th, 2017

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Ultracold atom waves may shed light on rogue ocean killers: Rice quantum experiments probe underlying physics of rogue ocean waves April 27th, 2017

Looking for the quantum frontier: Beyond classical computing without fault-tolerance? April 27th, 2017

Metal nanoparticles induced visible-light photocatalysis: Mechanisms, applications, ways of promoting catalytic activity and outlook April 27th, 2017

Video captures bubble-blowing battery in action: Researchers propose how bubbles form, could lead to smaller lithium-air batteries April 26th, 2017

Energy

Using light to propel water : With new method, MIT engineers can control and separate fluids on a surface using only visible light April 25th, 2017

SUNY Polytechnic Institute Announces Total of 172 Teams Selected to Compete in Solar in Your Community Challenge: Teams from 40 states, plus Washington, DC, 2 Territories, and 4 American Indian Reservations, Will Deploy Solar in Underserved Communities April 20th, 2017

Better living through pressure: Functional nanomaterials made easy April 19th, 2017

Shedding light on the absorption of light by titanium dioxide April 14th, 2017

Photonics/Optics/Lasers

Using light to propel water : With new method, MIT engineers can control and separate fluids on a surface using only visible light April 25th, 2017

Method improves semiconductor fiber optics, paves way for developing devices April 16th, 2017

AIM Photonics Presents Cutting-Edge Integrated Photonics Technology Developments to Packed House at OFC 2017, the Optical Networking and Communication Conference & Exhibition April 11th, 2017

Photonics breakthough paving the way for improved wireless communication systems: The work could bolster the wireless revolution underway with efficiencies several orders of magnitude April 5th, 2017

Solar/Photovoltaic

SUNY Polytechnic Institute Announces Total of 172 Teams Selected to Compete in Solar in Your Community Challenge: Teams from 40 states, plus Washington, DC, 2 Territories, and 4 American Indian Reservations, Will Deploy Solar in Underserved Communities April 20th, 2017

Better living through pressure: Functional nanomaterials made easy April 19th, 2017

Shedding light on the absorption of light by titanium dioxide April 14th, 2017

Controlling forces between atoms, molecules, promising for ‘2-D hyperbolic’ materials April 4th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project