Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > A bright future for optoelectronics: A diode made from a 2D material facilitates novel solar cells

A 2D Material opens up previously unimagined possibilities for solar cells, photodiodes and light-emitting diodes
A 2D Material opens up previously unimagined possibilities for solar cells, photodiodes and light-emitting diodes

Abstract:
A special type of diode made from a crystalline material whose layers are just three atoms thick has been successfully realized for the first time. The superior properties of such ultra-thin crystals open up previously unimagined possibilities for solar cells, photodiodes and light-emitting diodes. The paper, now published in Nature Nanotechnology, not only documents the actual functionality of a so-called p-n diode made of tungsten diselenide, it also demonstrates its usefulness for numerous applications. These findings, obtained through an Austrian Science Fund FWF project, thus constitute significant progress on the future path to 2D optoelectronics.

A bright future for optoelectronics: A diode made from a 2D material facilitates novel solar cells

Vienna, Austria | Posted on March 10th, 2014

Electronic devices require semiconductors. These are usually made from crystalline silicon. The state of the art here is the use of three-dimensional crystals. But these not only combine low flexibility with high weight - they are also expensive to manufacture. Alternative approaches - organic semiconductors and thin-film technologies - result, in turn, in materials with inferior quality and durability. Two-dimensional (2D) crystals - crystalline material layers with a thickness of just one or a few atoms - offer a better chance of success. They can be produced economically on a large scale and are flexible, yet still exhibit all the advantages of crystalline materials. Now a team from the Institute of Photonics at the Vienna University of Technology has succeeded in producing the first diode with a p-n junction from such 2D crystals - thus laying the foundation for radical changes in optoelectronics.

A GAP IN THE RESULT

The starting material used for this by the team working with Prof. Thomas Mueller was tungsten diselenide (WSe2). It has one major advantage over graphene, the most well-known 2D crystalline material at present, as Prof. Mueller explains: "Tungsten diselenide has a band gap - so electrons require a certain energy to cross over to the conduction band. Graphene can't easily provide this basic requirement for many electronic components." To ensure that WSe2 was actually present in the form of a 2D layer for the team's further work, it was mechanically "peeled" from three-dimensional crystals in such a way that layers having a thickness of just 0.7 nanometers were created. As Prof. Mueller explains: "We subsequently used complex procedures to check whether we had indeed succeeded in realizing 2D crystals, as only such thin layers exhibit the required properties." Spectroscopic analyses, optical contrast measurements and atomic force microscopy confirmed that the researchers had achieved the desired result. The monolayer WSe2 was then placed between two electrodes and the electrical characteristics were measured. This unambiguously confirmed its function as a p-n diode: it was possible to inject both positive (p, holes) and negative (n, electrons) charges, with current flow exclusively in one direction, as is usual in diodes.

THIN SUCCESS

"WSe2 in monolayer crystalline form is theoretically an ideal starting material for p-n diodes and optoelectronics - but no one had ever proven it before. We have now done just that. We measured an efficiency of 0.5 percent in converting light to electrical energy," says Prof. Mueller, explaining the first demonstration worldwide of the photovoltaic characteristics of a 2D crystalline material. The high transparency, at 95 percent, means it can even be used simultaneously as window glass and as a solar cell. However, it is also possible to stack several such ultra-thin layers one on top of another to increase the efficiency to as much as 10 percent - of course at the expense of transparency.

The material's functionality as a photodiode was also proven, achieving a sensitivity one order of magnitude higher than that of graphene. These properties are further enhanced by the ability to convert electrical energy to light.

Overall, the results of this FWF project offer impressive proof that WSe2 possesses superior optoelectronic properties that create new possibilities for solar cells, photodiodes and light-emitting diodes.

####

For more information, please click here

Contacts:
Scientific Contact:
Prof. Thomas Mueller
Vienna University of Technology
Photonics Institute
Gusshausstraße 27-29/E387
1040 Vienna, Austria
T +43 / 1 / 58801 - 38739
E

Austrian Science Fund FWF:
Mag. Stefan Bernhardt
Haus der Forschung
Sensengasse 1
1090 Vienna, Austria
T +43 / 1 / 505 67 40 - 8111
E
W http://www.fwf.ac.at

Copy Editing & Distribution:
PR&D - Public Relations for Research & Education
Mariannengasse 8
1090 Vienna, Austria
T +43 / 1 / 505 70 44
E
W http://www.prd.at

Copyright © Vienna University of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Original publication: A. Pospischil, M. M. Furchi, und T. Mueller, Solar-energy conversion and light emission in an atomic monolayer p-n diode, Nature Nanotechnology (2014):

Related News Press

News and information

First Observation of Electronic Structure in Ag-Rh Alloy Nanoparticles Having Hydrogen Absorbing: Storage Property –Attempting to solve the mystery of why Ag-Rh alloy nanoparticles have a similar property to Pd– October 30th, 2014

Iranians Present Model to Predict Photocatalytic Process in Removal of Pollutants October 30th, 2014

Production of Biocompatible Polymers in Iran October 30th, 2014

Amorphous Coordination Polymer Particles as alternative to classical nanoplatforms for nanomedicine October 30th, 2014

Govt.-Legislation/Regulation/Funding/Policy

'Electronic skin' could improve early breast cancer detection October 29th, 2014

New solar power material converts 90 percent of captured light into heat: SunShot Project aims to make solar cost competitive October 29th, 2014

Tiny carbon nanotube pores make big impact October 29th, 2014

Microrockets fueled by water neutralize chemical and biological warfare agents October 29th, 2014

Discoveries

First Observation of Electronic Structure in Ag-Rh Alloy Nanoparticles Having Hydrogen Absorbing: Storage Property –Attempting to solve the mystery of why Ag-Rh alloy nanoparticles have a similar property to Pd– October 30th, 2014

Iranians Present Model to Predict Photocatalytic Process in Removal of Pollutants October 30th, 2014

Production of Biocompatible Polymers in Iran October 30th, 2014

Amorphous Coordination Polymer Particles as alternative to classical nanoplatforms for nanomedicine October 30th, 2014

Announcements

First Observation of Electronic Structure in Ag-Rh Alloy Nanoparticles Having Hydrogen Absorbing: Storage Property –Attempting to solve the mystery of why Ag-Rh alloy nanoparticles have a similar property to Pd– October 30th, 2014

Iranians Present Model to Predict Photocatalytic Process in Removal of Pollutants October 30th, 2014

Production of Biocompatible Polymers in Iran October 30th, 2014

Amorphous Coordination Polymer Particles as alternative to classical nanoplatforms for nanomedicine October 30th, 2014

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals

First Observation of Electronic Structure in Ag-Rh Alloy Nanoparticles Having Hydrogen Absorbing: Storage Property –Attempting to solve the mystery of why Ag-Rh alloy nanoparticles have a similar property to Pd– October 30th, 2014

Iranians Present Model to Predict Photocatalytic Process in Removal of Pollutants October 30th, 2014

Production of Biocompatible Polymers in Iran October 30th, 2014

Amorphous Coordination Polymer Particles as alternative to classical nanoplatforms for nanomedicine October 30th, 2014

Energy

Iranians Present Model to Predict Photocatalytic Process in Removal of Pollutants October 30th, 2014

New solar power material converts 90 percent of captured light into heat: SunShot Project aims to make solar cost competitive October 29th, 2014

New Compact SIMS at 61st AVS | Visit us on Booth 311 October 28th, 2014

New evidence for an exotic, predicted superconducting state October 27th, 2014

Photonics/Optics/Lasers

Watching the hidden life of materials: Ultrafast electron diffraction experiments open a new window on the microscopic world October 27th, 2014

Physicists build reversible laser tractor beam October 20th, 2014

Magnetic mirrors enable new technologies by reflecting light in uncanny ways October 16th, 2014

IRLYNX and CEA-Leti to Streamline New CMOS-based Infrared Sensing Modules Dedicated to Human-activities Characterization October 15th, 2014

Solar/Photovoltaic

New solar power material converts 90 percent of captured light into heat: SunShot Project aims to make solar cost competitive October 29th, 2014

Advancing thin film research with nanostructured AZO: Innovnano’s unique and cost-effective AZO sputtering targets for the production of transparent conducting oxides October 23rd, 2014

Magnetic mirrors enable new technologies by reflecting light in uncanny ways October 16th, 2014

Dyesol Signs Letter of Intent with Tata Steel October 13th, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE