Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > A bright future for optoelectronics: A diode made from a 2D material facilitates novel solar cells

A 2D Material opens up previously unimagined possibilities for solar cells, photodiodes and light-emitting diodes
A 2D Material opens up previously unimagined possibilities for solar cells, photodiodes and light-emitting diodes

Abstract:
A special type of diode made from a crystalline material whose layers are just three atoms thick has been successfully realized for the first time. The superior properties of such ultra-thin crystals open up previously unimagined possibilities for solar cells, photodiodes and light-emitting diodes. The paper, now published in Nature Nanotechnology, not only documents the actual functionality of a so-called p-n diode made of tungsten diselenide, it also demonstrates its usefulness for numerous applications. These findings, obtained through an Austrian Science Fund FWF project, thus constitute significant progress on the future path to 2D optoelectronics.

A bright future for optoelectronics: A diode made from a 2D material facilitates novel solar cells

Vienna, Austria | Posted on March 10th, 2014

Electronic devices require semiconductors. These are usually made from crystalline silicon. The state of the art here is the use of three-dimensional crystals. But these not only combine low flexibility with high weight - they are also expensive to manufacture. Alternative approaches - organic semiconductors and thin-film technologies - result, in turn, in materials with inferior quality and durability. Two-dimensional (2D) crystals - crystalline material layers with a thickness of just one or a few atoms - offer a better chance of success. They can be produced economically on a large scale and are flexible, yet still exhibit all the advantages of crystalline materials. Now a team from the Institute of Photonics at the Vienna University of Technology has succeeded in producing the first diode with a p-n junction from such 2D crystals - thus laying the foundation for radical changes in optoelectronics.

A GAP IN THE RESULT

The starting material used for this by the team working with Prof. Thomas Mueller was tungsten diselenide (WSe2). It has one major advantage over graphene, the most well-known 2D crystalline material at present, as Prof. Mueller explains: "Tungsten diselenide has a band gap - so electrons require a certain energy to cross over to the conduction band. Graphene can't easily provide this basic requirement for many electronic components." To ensure that WSe2 was actually present in the form of a 2D layer for the team's further work, it was mechanically "peeled" from three-dimensional crystals in such a way that layers having a thickness of just 0.7 nanometers were created. As Prof. Mueller explains: "We subsequently used complex procedures to check whether we had indeed succeeded in realizing 2D crystals, as only such thin layers exhibit the required properties." Spectroscopic analyses, optical contrast measurements and atomic force microscopy confirmed that the researchers had achieved the desired result. The monolayer WSe2 was then placed between two electrodes and the electrical characteristics were measured. This unambiguously confirmed its function as a p-n diode: it was possible to inject both positive (p, holes) and negative (n, electrons) charges, with current flow exclusively in one direction, as is usual in diodes.

THIN SUCCESS

"WSe2 in monolayer crystalline form is theoretically an ideal starting material for p-n diodes and optoelectronics - but no one had ever proven it before. We have now done just that. We measured an efficiency of 0.5 percent in converting light to electrical energy," says Prof. Mueller, explaining the first demonstration worldwide of the photovoltaic characteristics of a 2D crystalline material. The high transparency, at 95 percent, means it can even be used simultaneously as window glass and as a solar cell. However, it is also possible to stack several such ultra-thin layers one on top of another to increase the efficiency to as much as 10 percent - of course at the expense of transparency.

The material's functionality as a photodiode was also proven, achieving a sensitivity one order of magnitude higher than that of graphene. These properties are further enhanced by the ability to convert electrical energy to light.

Overall, the results of this FWF project offer impressive proof that WSe2 possesses superior optoelectronic properties that create new possibilities for solar cells, photodiodes and light-emitting diodes.

####

For more information, please click here

Contacts:
Scientific Contact:
Prof. Thomas Mueller
Vienna University of Technology
Photonics Institute
Gusshausstraße 27-29/E387
1040 Vienna, Austria
T +43 / 1 / 58801 - 38739
E

Austrian Science Fund FWF:
Mag. Stefan Bernhardt
Haus der Forschung
Sensengasse 1
1090 Vienna, Austria
T +43 / 1 / 505 67 40 - 8111
E
W http://www.fwf.ac.at

Copy Editing & Distribution:
PR&D - Public Relations for Research & Education
Mariannengasse 8
1090 Vienna, Austria
T +43 / 1 / 505 70 44
E
W http://www.prd.at

Copyright © Vienna University of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Original publication: A. Pospischil, M. M. Furchi, und T. Mueller, Solar-energy conversion and light emission in an atomic monolayer p-n diode, Nature Nanotechnology (2014):

Related News Press

News and information

DNA sensor system developed for specific and sensitive measurement of cancer-relevant enzyme activity August 23rd, 2017

Lego proteins revealed: Self-assembling protein complexes based on a single mutation could provide scaffolding for nanostructures August 23rd, 2017

Heating quantum matter: A novel view on topology: Physicists demonstrate how heating up a quantum system can be used as a universal probe for exotic states of matter August 22nd, 2017

A Tougher Tooth: A new dental restoration composite developed by UCSB scientists proves more durable than the conventional material August 22nd, 2017

Govt.-Legislation/Regulation/Funding/Policy

Nagoya physicists resolve long-standing mystery of structure-less transition: Nagoya University-led team of physicists use a synchrotron radiation X-ray source to probe a so-called 'structure-less' transition and develop a new understanding of molecular conductors August 21st, 2017

Researchers printed graphene-like materials with inkjet August 17th, 2017

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

2-faced 2-D material is a first at Rice: Rice University materials scientists create flat sandwich of sulfur, molybdenum and selenium August 14th, 2017

Discoveries

DNA sensor system developed for specific and sensitive measurement of cancer-relevant enzyme activity August 23rd, 2017

Lego proteins revealed: Self-assembling protein complexes based on a single mutation could provide scaffolding for nanostructures August 23rd, 2017

Heating quantum matter: A novel view on topology: Physicists demonstrate how heating up a quantum system can be used as a universal probe for exotic states of matter August 22nd, 2017

A Tougher Tooth: A new dental restoration composite developed by UCSB scientists proves more durable than the conventional material August 22nd, 2017

Announcements

DNA sensor system developed for specific and sensitive measurement of cancer-relevant enzyme activity August 23rd, 2017

Lego proteins revealed: Self-assembling protein complexes based on a single mutation could provide scaffolding for nanostructures August 23rd, 2017

Heating quantum matter: A novel view on topology: Physicists demonstrate how heating up a quantum system can be used as a universal probe for exotic states of matter August 22nd, 2017

A Tougher Tooth: A new dental restoration composite developed by UCSB scientists proves more durable than the conventional material August 22nd, 2017

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

DNA sensor system developed for specific and sensitive measurement of cancer-relevant enzyme activity August 23rd, 2017

Lego proteins revealed: Self-assembling protein complexes based on a single mutation could provide scaffolding for nanostructures August 23rd, 2017

Heating quantum matter: A novel view on topology: Physicists demonstrate how heating up a quantum system can be used as a universal probe for exotic states of matter August 22nd, 2017

Nagoya physicists resolve long-standing mystery of structure-less transition: Nagoya University-led team of physicists use a synchrotron radiation X-ray source to probe a so-called 'structure-less' transition and develop a new understanding of molecular conductors August 21st, 2017

Energy

The power of perovskite: OIST researchers improve perovskite-based technology in the entire energy cycle, from solar cells harnessing power to LED diodes to light the screens of future electronic devices and other lighting applications August 18th, 2017

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Fewer defects from a 2-D approach August 15th, 2017

Photonics/Optics/Lasers

Researchers printed graphene-like materials with inkjet August 17th, 2017

Moving at the Speed of Light: University of Arizona selected for high-impact, industrial demonstration of new integrated photonic cryogenic datalink for focal plane arrays: Program is major milestone for AIM Photonics August 10th, 2017

Sensing technology takes a quantum leap with RIT photonics research: Office of Naval Research funds levitated optomechanics project August 10th, 2017

High resolution without particle accelerator: A first for physics -- University of Jena physicists are first to achieve optical coherence tomography with XUV radiation at laboratory scale August 7th, 2017

Solar/Photovoltaic

The power of perovskite: OIST researchers improve perovskite-based technology in the entire energy cycle, from solar cells harnessing power to LED diodes to light the screens of future electronic devices and other lighting applications August 18th, 2017

Fewer defects from a 2-D approach August 15th, 2017

Controlled manipulation: Scientists at FAU are investigating the properties of hybrid systems consisting of carbon nanostructures and a dye August 8th, 2017

Simultaneous Design and Nanomanufacturing Speeds Up Fabrication: Method enhances broadband light absorption in solar cells August 5th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project