Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Relativity shakes a magnet: Researchers from Mainz University demonstrate a new principle for magnetic recording / Publication in Nature Nanotechnology

 Ill./©: Jairo SinovaResearchers from Mainz University demonstrate a new principle for magnetic recording / Publication in Nature Nanotechnology
Ill./©: Jairo Sinova

Researchers from Mainz University demonstrate a new principle for magnetic recording / Publication in Nature Nanotechnology

Abstract:
The research group of Professor Jairo Sinova at the Institute of Physics at Johannes Gutenberg University Mainz (JGU), in collaboration with researchers from Prague, Cambridge, and Nottingham, have predicted and discovered a new physical phenomenon that allows to manipulate the state of a magnet by electric signals. Current technologies for writing, storing, and reading information are either charge-based or spin-based. Semiconductor flash or random access memories are prime examples among the large variety of charge-based devices. They utilize the possibility offered by semiconductors to easily electrically manipulate and detect their electronic charge states representing the "zeros" and "ones". The downside is that weak perturbations such as impurities, temperature change, or radiation can lead to uncontrolled charge redistributions and, as a consequence, to data loss. Spin-based devices operate on an entirely distinct principle. In some materials, like iron, electron spins generate magnetism and the position of the north and south pole of the magnet can be used to store the zeros and ones. This technology is behind memory applications ranging from kilobyte magnetic stripe cards to terabyte computer hard disks. Since they are based on spin, the devices are much more robust against charge perturbations. However, the drawback of current magnetic memories is that in order to reverse the north and south poles of the magnet, i.e., flip the zero to one or vice versa, the magnetic bit has to be coupled to an electro-magnet or to another permanent magnet. If instead one could flip the poles by an electric signal without involving another magnet, a new generation of memories can be envisaged combining the merits of both charge and spin-based devices.

Relativity shakes a magnet: Researchers from Mainz University demonstrate a new principle for magnetic recording / Publication in Nature Nanotechnology

Mainz, Germany | Posted on March 4th, 2014

In order the shake a magnet electrically without involving an electro-magnet or another permanent magnet one has to step out of the realm of classical physics and enter the relativistic quantum mechanics. Einstein's relativity allows electrons subject to electric current to order their spins so they become magnetic. The researchers took a permanent magnet GaMnAs and by applying an electric current inside the permanent magnet they created a new internal magnetic cloud, which was able to manipulate the surrounding permanent magnet. The work has been published in the journal Nature Nanotechnology.

The observed phenomenon is closely related to the relativistic intrinsic spin Hall effect which Jörg Wunderlich, Jairo Sinova, and Tomas Jungwirth discovered in 2004 following a prediction of Sinova and co-workers in 2003. Since then it has become a text-book demonstration of how electric currents can magnetize any material. "Ten years ago we predicted and discovered how electric currents can generate pure spin-currents through the intrinsic structure of materials. Now we have shown how this effect can be reversed to manipulate magnets by the current-induced polarization. These new phenomena are a major topic of research today since they can lead to new generation of memory devices. Besides our on-going collaborations, this research direction couples very well with on-going experimental research here in Mainz. Being part of this world-leading research and working with superb colleagues is an immense privilege and I am very excited about the future", said Sinova.

####

For more information, please click here

Contacts:
Professor Dr. Jairo Sinova
Institute of Physics
Johannes Gutenberg University
D 55099 Mainz
Tel +49 6131 39-21284
Fax +49 6131 39-26267

Copyright © Johannes Gutenberg Universitaet Mainz

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Related News Press

News and information

GLOBALFOUNDRIES Completes Acquisition of IBM Microelectronics Business: Transaction adds differentiating technologies, world-class technologists, and intellectual property July 1st, 2015

Samsung's New Graphene Technology Will Double Life Of Your Lithium-Ion Battery July 1st, 2015

Measurement of Tiny Amounts of Heavy Metals in Baby Food Samples July 1st, 2015

Oxford Instruments’ TritonXL Cryofree dilution refrigerator selected for the Oxford NQIT Quantum Technology Hub project June 30th, 2015

Physics

Helium 'balloons' offer new path to control complex materials June 27th, 2015

The peaks and valleys of silicon: Team of USC Viterbi School of Engineering Researchers introduce new layered semiconducting materials as silicon alternative June 27th, 2015

The quantum spin Hall effect is a fundamental property of light June 25th, 2015

Physicists fine-tune control of agile exotic materials: Tunable hybrid polaritons realized with graphene layer on hexagonal boron nitride June 24th, 2015

Spintronics

Spintronics advance brings wafer-scale quantum devices closer to reality June 24th, 2015

Solvent encapsulation is the trick: a solid material with spin-transition solution-like behaviour June 5th, 2015

Oxford Instruments welcomes Dr Masamitsu Hayashi, the winner of the Sir Martin Wood Science Prize for Japan, to UK June 1st, 2015

New options for spintronic devices: Switching magnetism between 1 and 0 with low voltage near room temperature May 18th, 2015

Chip Technology

GLOBALFOUNDRIES Completes Acquisition of IBM Microelectronics Business: Transaction adds differentiating technologies, world-class technologists, and intellectual property July 1st, 2015

BASF and Fraunhofer IPMS-CNT jointly develop electronic materials June 30th, 2015

Graphene flexes its electronic muscles: Rice-led researchers calculate electrical properties of carbon cones, other shapes June 30th, 2015

Making new materials with micro-explosions: ANU media release: Scientists have made exotic new materials by creating laser-induced micro-explosions in silicon, the common computer chip material June 29th, 2015

Memory Technology

Graphene flexes its electronic muscles: Rice-led researchers calculate electrical properties of carbon cones, other shapes June 30th, 2015

Buckle up for fast ionic conduction June 16th, 2015

A KAIST research team develops the first flexible phase-change random access memory June 15th, 2015

Argonne scientists announce first room-temperature magnetic skyrmion bubbles: New ideas are bubbling up for more efficient computer memory June 13th, 2015

Discoveries

Measurement of Tiny Amounts of Heavy Metals in Baby Food Samples July 1st, 2015

Chitosan coated, chemotherapy packed nanoparticles may target cancer stem cells June 30th, 2015

Graphene flexes its electronic muscles: Rice-led researchers calculate electrical properties of carbon cones, other shapes June 30th, 2015

Researchers from the UCA, key players in a pioneering study that may explain the origin of several digestive diseases June 30th, 2015

Announcements

GLOBALFOUNDRIES Completes Acquisition of IBM Microelectronics Business: Transaction adds differentiating technologies, world-class technologists, and intellectual property July 1st, 2015

Samsung's New Graphene Technology Will Double Life Of Your Lithium-Ion Battery July 1st, 2015

Measurement of Tiny Amounts of Heavy Metals in Baby Food Samples July 1st, 2015

Oxford Instruments’ TritonXL Cryofree dilution refrigerator selected for the Oxford NQIT Quantum Technology Hub project June 30th, 2015

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Samsung's New Graphene Technology Will Double Life Of Your Lithium-Ion Battery July 1st, 2015

Measurement of Tiny Amounts of Heavy Metals in Baby Food Samples July 1st, 2015

Carnegie Mellon chemists characterize 3-D macroporous hydrogels: Methods will allow researchers to develop new 'smart' materials June 30th, 2015

Chitosan coated, chemotherapy packed nanoparticles may target cancer stem cells June 30th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project