Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > UC research tests which nano system works best in killing cancer cells: New UC research to be presented this week tested four iron-oxide nanoparticle systems to see which, when heated, would likely work best as a tool for targeting cancer cells

View of iron-oxide nanoparticles embedded in a polystyrene matrix as seen via a transmission electron microscope. These nanoparticles, when heated, can be applied to cancer cells in order to kill those cells.
View of iron-oxide nanoparticles embedded in a polystyrene matrix as seen via a transmission electron microscope. These nanoparticles, when heated, can be applied to cancer cells in order to kill those cells.

Abstract:
In current research related to improving cancer treatments, one promising area of research is the effort to find ways to selectively pinpoint and target cancer cells while minimizing effects on healthy cells.

UC research tests which nano system works best in killing cancer cells: New UC research to be presented this week tested four iron-oxide nanoparticle systems to see which, when heated, would likely work best as a tool for targeting cancer cells

Cincinnati, OH | Posted on March 4th, 2014

In that effort, it's already been found in lab experiments that iron-oxide nanoparticles, when heated and then applied specifically to cancer cells, can kill those cells because cancer cells are particularly susceptible to changes in temperature. Increasing the temperature of cancer cells to over 43 degrees Celsius (about 109 degrees Fahrenheit) for a sufficient period of time can kill those cells.

So, a University of Cincinnati-led team - along with researchers at Iowa State University, the University of Michigan and Shanghai Jiao Tong University - recently conducted experiments to see which iron-oxide nanoparticle configurations or arrangements might work best as a tool to deliver this killing heat directly to cancer cells, specifically to breast cancer cells. The results will be presented at the March 3-7 American Physical Society Conference in Denver by UC physics doctoral student Md Ehsan Sadat.

In systematically studying four distinct magnetized nanoparticle systems with different structural and magnetic properties, the research team found that an unconfined nanoparticle system, which used an electromagnetic field to generate heat, was best able to transfer heat absorbed by cancer cells.

So, from the set of nano systems studied, the researchers found that uncoated iron-oxide nanoparticles and iron-oxide nanoparticles coated with polyacrylic acid (PAA) - both of which were unconfined or not embedded in a matrix - heated quickly and to temperatures more than sufficient to kill cancer cells.
Uncoated iron-oxide nanoparticles increased from a room temperature of 22 degrees Celsius to 66 degrees Celsius (about 150 degrees Fahrenheit).

Iron-oxide nanoparticles coated with polyacrylic acid (PAA) heated from a room temperature of 22 degrees Celsius to 73 degrees Celsius (about 163 degrees Fahrenheit.)

The goal was to determine the heating behaviors of different iron-oxide nanoparticles that varied in terms of the materials used in the nanoparticle apparatus as well as particle size, particle geometry, inter-particle spacing, physical confinement and surrounding environment since these are the key factors that strongly influence what's called the Specific Absorption Rate (SAR), or the measured rate at which the human body can absorb energy (in this case heat) when exposed to an electromagnetic field.

According to Sadat, "What we found was that the size of the particles and their anisotropic (directional) properties strongly affected the magnetic heating achieved. In other words, the smaller the particles and the greater their directional uniformity along an axis, the greater the heating that was achieved."

He added the systems' heating behaviors were also influenced by the concentrations of nanoparticles present. The higher the concentration of nanoparticles (the greater the number of nanoparticles and the more densely collected), the lower the SAR or the rate at which the tissue was able to absorb the heat generated.

THE FOUR SYSTEMS STUDIED
The researchers studied
uncoated iron-oxide nanoparticles
iron-oxide nanoparticles coated with polyacrylic acid (PAA)
a polystyrene nanosphere with iron-oxide nanoparticles uniformly embedded in its matrix
a polystyrene nanosphere with iron-oxide nanoparticles uniformly embedded in its matrix but with a thin film surface of silica

All four nanoparticle systems were exposed to the same magnetic field for 35 minutes, and temperature measurements were performed at two-minute intervals.

As stated, the PAA iron-oxide and the uncoated iron-oxide samples showed the highest temperature change. The lowest temperature changes, insufficient to kill cancer cells, were exhibited by
The polystyrene nanosphere, which heated to 36 degrees Celsius (about 96 degree Fahrenheit).
The polystyrene nanosphere with a silica coating heated to 40 degrees Celsius (104 degrees Fahrenheit).

In addition to Sadat, others on the research team include Ronak Patel, former master's student in materials sciences and engineering in UC's College of Engineering and Applied Science; Jason Sookoor, undergraduate neuroscience student from UC's McMicken College of Arts and Sciences; Sergey L. Bud'ko, adjunct associate professor, Ames Laboratory and Department of Physics and Astronomy, Iowa State University; Rodney C. Ewing, Edward H. Kraus distinguished university professor, University of Michigan; Jiaming Zhang, assistant research scientist, University of Michigan; Hong Xu of the Med-X Institute, Shanghai Jiao Tong University; Giovanni M. Pauletti, associate professor in UC's James L. Winkle College of Pharmacy; David B. Mast, associate professor of physics in UC's McMicken College of Arts and Sciences; and Donglu Shi, professor of materials science and engineering at UC's College of Engineering and Applied Science.

Support for this research was provided by a National Science Foundation grant under contract number NSF (1343568) titled "Development of Nanotechnology Minor Focused on Nano Biomedicine and Sustainable Energy." Work at the Ames Laboratory was supported by the United States Department of Energy, Basic Energy Sciences, Division of Materials Sciences and Engineering.

####

For more information, please click here

Contacts:
M.B. Reilly

513-556-1824

Copyright © University of Cincinnati

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Laboratories

Could I squeeze by you? Ames Laboratory scientists model molecular movement within narrow channels of mesoporous nanoparticles October 21st, 2014

News and information

Could I squeeze by you? Ames Laboratory scientists model molecular movement within narrow channels of mesoporous nanoparticles October 21st, 2014

Detecting Cancer Earlier is Goal of Rutgers-Developed Medical Imaging Technology: Rare earth nanocrystals and infrared light can reveal small cancerous tumors and cardiovascular lesions October 21st, 2014

Nitrogen Doped Graphene Characterized by Iranian, Russian, German Scientists October 21st, 2014

Crystallizing the DNA nanotechnology dream: Scientists have designed the first large DNA crystals with precisely prescribed depths and complex 3D features, which could create revolutionary nanodevices October 20th, 2014

Govt.-Legislation/Regulation/Funding/Policy

Could I squeeze by you? Ames Laboratory scientists model molecular movement within narrow channels of mesoporous nanoparticles October 21st, 2014

Crystallizing the DNA nanotechnology dream: Scientists have designed the first large DNA crystals with precisely prescribed depths and complex 3D features, which could create revolutionary nanodevices October 20th, 2014

Imaging electric charge propagating along microbial nanowires October 20th, 2014

HP Supercomputer at NREL Garners Top Honor October 19th, 2014

Nanomedicine

Detecting Cancer Earlier is Goal of Rutgers-Developed Medical Imaging Technology: Rare earth nanocrystals and infrared light can reveal small cancerous tumors and cardiovascular lesions October 21st, 2014

Design of micro and nanoparticles to improve treatments for Alzheimers and Parkinsons: At the Faculty of Pharmacy of the UPV/EHU-University of the Basque Country encapsulation techniques are being developed to deliver correctly and effectively certain drugs October 20th, 2014

Non-Toxic Nanocatalysts Open New Window for Significant Decrease in Reaction Process October 19th, 2014

European Commission opens the gate towards the implementation of Nanomedicine Translation Hub October 16th, 2014

Discoveries

Could I squeeze by you? Ames Laboratory scientists model molecular movement within narrow channels of mesoporous nanoparticles October 21st, 2014

Detecting Cancer Earlier is Goal of Rutgers-Developed Medical Imaging Technology: Rare earth nanocrystals and infrared light can reveal small cancerous tumors and cardiovascular lesions October 21st, 2014

Nitrogen Doped Graphene Characterized by Iranian, Russian, German Scientists October 21st, 2014

Removal of Limitations of Composites at Superheat Temperatures October 20th, 2014

Announcements

Could I squeeze by you? Ames Laboratory scientists model molecular movement within narrow channels of mesoporous nanoparticles October 21st, 2014

Detecting Cancer Earlier is Goal of Rutgers-Developed Medical Imaging Technology: Rare earth nanocrystals and infrared light can reveal small cancerous tumors and cardiovascular lesions October 21st, 2014

Nitrogen Doped Graphene Characterized by Iranian, Russian, German Scientists October 21st, 2014

Removal of Limitations of Composites at Superheat Temperatures October 20th, 2014

Events/Classes

Ucore's McKenzie to Deliver Presentation to Rare Earths Conference in Singapore as Highlight of Fall 2014 Marketplace Schedule October 19th, 2014

Aspen Aerogels, Inc. Schedules Third Quarter 2014 Earnings Release and Conference Call for November 6, 2014 October 17th, 2014

New VDMA Association "Electronics, Micro and Nano Technologies" founded: Inaugural Meeting in Frankfurt/Main, Germany October 15th, 2014

Nanotronics Imaging Releases nSPECŪ 3D, Powerful Microscope That Captures 3D Images at Nanoscale, in Lightning Speed: Company Unveils Design at American Chemical Society 2014 International Elastomer Conference October 14th, 2014

Research partnerships

Detecting Cancer Earlier is Goal of Rutgers-Developed Medical Imaging Technology: Rare earth nanocrystals and infrared light can reveal small cancerous tumors and cardiovascular lesions October 21st, 2014

Nitrogen Doped Graphene Characterized by Iranian, Russian, German Scientists October 21st, 2014

Crystallizing the DNA nanotechnology dream: Scientists have designed the first large DNA crystals with precisely prescribed depths and complex 3D features, which could create revolutionary nanodevices October 20th, 2014

IRLYNX and CEA-Leti to Streamline New CMOS-based Infrared Sensing Modules Dedicated to Human-activities Characterization October 15th, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE