Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > UC research tests which nano system works best in killing cancer cells: New UC research to be presented this week tested four iron-oxide nanoparticle systems to see which, when heated, would likely work best as a tool for targeting cancer cells

View of iron-oxide nanoparticles embedded in a polystyrene matrix as seen via a transmission electron microscope. These nanoparticles, when heated, can be applied to cancer cells in order to kill those cells.
View of iron-oxide nanoparticles embedded in a polystyrene matrix as seen via a transmission electron microscope. These nanoparticles, when heated, can be applied to cancer cells in order to kill those cells.

Abstract:
In current research related to improving cancer treatments, one promising area of research is the effort to find ways to selectively pinpoint and target cancer cells while minimizing effects on healthy cells.

UC research tests which nano system works best in killing cancer cells: New UC research to be presented this week tested four iron-oxide nanoparticle systems to see which, when heated, would likely work best as a tool for targeting cancer cells

Cincinnati, OH | Posted on March 4th, 2014

In that effort, it's already been found in lab experiments that iron-oxide nanoparticles, when heated and then applied specifically to cancer cells, can kill those cells because cancer cells are particularly susceptible to changes in temperature. Increasing the temperature of cancer cells to over 43 degrees Celsius (about 109 degrees Fahrenheit) for a sufficient period of time can kill those cells.

So, a University of Cincinnati-led team - along with researchers at Iowa State University, the University of Michigan and Shanghai Jiao Tong University - recently conducted experiments to see which iron-oxide nanoparticle configurations or arrangements might work best as a tool to deliver this killing heat directly to cancer cells, specifically to breast cancer cells. The results will be presented at the March 3-7 American Physical Society Conference in Denver by UC physics doctoral student Md Ehsan Sadat.

In systematically studying four distinct magnetized nanoparticle systems with different structural and magnetic properties, the research team found that an unconfined nanoparticle system, which used an electromagnetic field to generate heat, was best able to transfer heat absorbed by cancer cells.

So, from the set of nano systems studied, the researchers found that uncoated iron-oxide nanoparticles and iron-oxide nanoparticles coated with polyacrylic acid (PAA) - both of which were unconfined or not embedded in a matrix - heated quickly and to temperatures more than sufficient to kill cancer cells.
Uncoated iron-oxide nanoparticles increased from a room temperature of 22 degrees Celsius to 66 degrees Celsius (about 150 degrees Fahrenheit).

Iron-oxide nanoparticles coated with polyacrylic acid (PAA) heated from a room temperature of 22 degrees Celsius to 73 degrees Celsius (about 163 degrees Fahrenheit.)

The goal was to determine the heating behaviors of different iron-oxide nanoparticles that varied in terms of the materials used in the nanoparticle apparatus as well as particle size, particle geometry, inter-particle spacing, physical confinement and surrounding environment since these are the key factors that strongly influence what's called the Specific Absorption Rate (SAR), or the measured rate at which the human body can absorb energy (in this case heat) when exposed to an electromagnetic field.

According to Sadat, "What we found was that the size of the particles and their anisotropic (directional) properties strongly affected the magnetic heating achieved. In other words, the smaller the particles and the greater their directional uniformity along an axis, the greater the heating that was achieved."

He added the systems' heating behaviors were also influenced by the concentrations of nanoparticles present. The higher the concentration of nanoparticles (the greater the number of nanoparticles and the more densely collected), the lower the SAR or the rate at which the tissue was able to absorb the heat generated.

THE FOUR SYSTEMS STUDIED
The researchers studied
uncoated iron-oxide nanoparticles
iron-oxide nanoparticles coated with polyacrylic acid (PAA)
a polystyrene nanosphere with iron-oxide nanoparticles uniformly embedded in its matrix
a polystyrene nanosphere with iron-oxide nanoparticles uniformly embedded in its matrix but with a thin film surface of silica

All four nanoparticle systems were exposed to the same magnetic field for 35 minutes, and temperature measurements were performed at two-minute intervals.

As stated, the PAA iron-oxide and the uncoated iron-oxide samples showed the highest temperature change. The lowest temperature changes, insufficient to kill cancer cells, were exhibited by
The polystyrene nanosphere, which heated to 36 degrees Celsius (about 96 degree Fahrenheit).
The polystyrene nanosphere with a silica coating heated to 40 degrees Celsius (104 degrees Fahrenheit).

In addition to Sadat, others on the research team include Ronak Patel, former master's student in materials sciences and engineering in UC's College of Engineering and Applied Science; Jason Sookoor, undergraduate neuroscience student from UC's McMicken College of Arts and Sciences; Sergey L. Bud'ko, adjunct associate professor, Ames Laboratory and Department of Physics and Astronomy, Iowa State University; Rodney C. Ewing, Edward H. Kraus distinguished university professor, University of Michigan; Jiaming Zhang, assistant research scientist, University of Michigan; Hong Xu of the Med-X Institute, Shanghai Jiao Tong University; Giovanni M. Pauletti, associate professor in UC's James L. Winkle College of Pharmacy; David B. Mast, associate professor of physics in UC's McMicken College of Arts and Sciences; and Donglu Shi, professor of materials science and engineering at UC's College of Engineering and Applied Science.

Support for this research was provided by a National Science Foundation grant under contract number NSF (1343568) titled "Development of Nanotechnology Minor Focused on Nano Biomedicine and Sustainable Energy." Work at the Ames Laboratory was supported by the United States Department of Energy, Basic Energy Sciences, Division of Materials Sciences and Engineering.

####

For more information, please click here

Contacts:
M.B. Reilly

513-556-1824

Copyright © University of Cincinnati

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

So, near and yet so far: Stable HGNs for Raman April 1st, 2015

Two-dimensional dirac materials: Structure, properties, and rarity April 1st, 2015

3-D neural structure guided with biocompatible nanofiber scaffolds and hydrogels April 1st, 2015

Light-powered gyroscope is world's smallest: Promises a powerful spin on navigation April 1st, 2015

From tobacco to cyberwood March 31st, 2015

Laboratories

Rutgers, NIST physicists report technology with potential for sub-micron optical switches March 31st, 2015

Using magnetic fields to understand high-temperature superconductivity: Los Alamos explores experimental path to potential 'next theory of superconductivity' March 27th, 2015

ORNL-led team demonstrates desalination with nanoporous graphene membrane March 25th, 2015

Govt.-Legislation/Regulation/Funding/Policy

Two-dimensional dirac materials: Structure, properties, and rarity April 1st, 2015

Rutgers, NIST physicists report technology with potential for sub-micron optical switches March 31st, 2015

SUNY Poly CNSE and Title Sponsor SEFCU Name Capital Region Teams Advancing to the Final Round of the 2015 New York Business Plan Competition March 30th, 2015

Princess Margaret scientists convert microbubbles to nanoparticles: Harnessing light to advance tumor imaging, provide platform for targeted treatment March 30th, 2015

Nanomedicine

3-D neural structure guided with biocompatible nanofiber scaffolds and hydrogels April 1st, 2015

Nanion Technologies Appoints James Costantin as Director of Customer Relations: Nanion is pleased to announce the appointment of Dr. James Costantin as Director of Customer Relations at Nanion Technologies Inc. March 31st, 2015

Nanomedicine shines light on combined force of nanomedicine and regenerative medicine March 31st, 2015

Prototype 'nanoneedles' generate new blood vessels in mice: Scientists have developed tiny 'nanoneedles' that have successfully prompted parts of the body to generate new blood vessels, in a trial in mice March 31st, 2015

Discoveries

Two-dimensional dirac materials: Structure, properties, and rarity April 1st, 2015

3-D neural structure guided with biocompatible nanofiber scaffolds and hydrogels April 1st, 2015

Light-powered gyroscope is world's smallest: Promises a powerful spin on navigation April 1st, 2015

Prototype 'nanoneedles' generate new blood vessels in mice: Scientists have developed tiny 'nanoneedles' that have successfully prompted parts of the body to generate new blood vessels, in a trial in mice March 31st, 2015

Announcements

So, near and yet so far: Stable HGNs for Raman April 1st, 2015

Two-dimensional dirac materials: Structure, properties, and rarity April 1st, 2015

3-D neural structure guided with biocompatible nanofiber scaffolds and hydrogels April 1st, 2015

Light-powered gyroscope is world's smallest: Promises a powerful spin on navigation April 1st, 2015

Events/Classes

Nanomedicine pioneer Mauro Ferrari at ETH Zurich March 31st, 2015

State-of-the-art online system unveiled to pinpoint metrology software accuracy March 27th, 2015

LAMDAMAP 2015 hosted by the University March 26th, 2015

SUNY POLY CNSE to Host First Ever Northeast Semi Supply Conference (NESCO) Conference Will Connect New and Emerging Innovators in the Northeastern US and Canada with Industry Leaders and Strategic Investors to Discuss Future Growth Opportunities in NYS March 25th, 2015

Research partnerships

Rutgers, NIST physicists report technology with potential for sub-micron optical switches March 31st, 2015

Prototype 'nanoneedles' generate new blood vessels in mice: Scientists have developed tiny 'nanoneedles' that have successfully prompted parts of the body to generate new blood vessels, in a trial in mice March 31st, 2015

'Atomic chicken-wire' is key to faster DNA sequencing March 30th, 2015

SUNY Poly & M+W Make Major Announcement: Major Expansion To Include M+W Owned Gehrlicher Solar America Corporation That Will Create up to 400 Jobs to Develop Solar Power Plants at SUNY Poly Sites Across New York State March 26th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE