Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Silver nanoparticle on graphene oxide support: An efficient catalyst for organic transformations

Figure 1: (Left) Transmission electron microscopy image of Ag-rGO nanohybrids. The inset shows the catalytic conversion of 4-nitrophenol to 4-aminophenol. Figure 2 (Right) Absorption spectra of 4-nitrophenol decreases in intensity and its color fades (inset) due to catalytic conversion.
Figure 1: (Left) Transmission electron microscopy image of Ag-rGO nanohybrids. The inset shows the catalytic conversion of 4-nitrophenol to 4-aminophenol. Figure 2 (Right) Absorption spectra of 4-nitrophenol decreases in intensity and its color fades (inset) due to catalytic conversion.

Abstract:
Silver (Ag) has a high catalytic activity towards many organic and inorganic transformations such as NOx reduction and catalytic oxidation of CO to CO2. In practical applications, catalysts like Ag are affixed to a substrate, usually a solid with a high surface area such as alumina or carbon.

Silver nanoparticle on graphene oxide support: An efficient catalyst for organic transformations

Toyohashi, Japan | Posted on March 2nd, 2014

To efficiently use Ag as a catalyst, its specific surface area must be maximized by reducing its particle size. Moreover, the development of simple and low-cost synthesis method is highly desired for practical applications.

Now, Tran Viet Thu and colleagues at Toyohashi University of Technology have shown that graphene oxide (GO) sheets can be used as an excellent support for the growth of Ag particles. GO was first prepared from commercial graphite by oxidation and exfoliation in water. Then the Ag-GO hybrids were prepared by a chemical reduction route using GO and silver nitrate as precursors, sodium borohydride as reducing agent, and trisodium citrate as stabilizer.

Transmission electron microscopy imaging showed very small size (3.60.6 nm) Ag particles to be decorated on GO sheets, compared with Ag particles synthesized without GO (tens of nm in size). This decrease in particle size means more Ag atoms were present at the surface and a large increase in the specific surface area. As a result, the Ag-GO hybrids were more efficient for the catalytic conversion of 4-nitrophenol (toxic pollutant) into 4-aminophenol, an intermediate for the production of several drugs. In addition, the Ag-GO hybrids exhibited improved catalytic activity compared to Ag particles synthesized without GO.

The research suggests a low-cost route for the synthesis of catalytic Ag-GO hybrids and highlights the promising use of GO as a support for other functional nanostructures.

Reference:
Authors: Tran Viet Thu, Pil Ju Ko, Nguyen Huu Huy Phuc, and Adarsh Sandhu.
Title of original paper: Room-temperature synthesis and enhanced catalytic performance of silver-reduced graphene oxide nanohybrids.
Journal, volume, pages and year: Journal of Nanoparticle Research 15 (10), 1-13 (2013).
Digital Object Identifier (DOI): 10.1007/s11051-013-1975-9
Affiliations: Electronics-Inspired Interdisciplinary Research Institute (EIIRIS) and Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology

####

For more information, please click here

Contacts:
Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku, Toyohashi, Aichi Prefecture, 441-8580, JAPAN
Enquiries
Toyohashi University of Technology, International Affairs Division

TEL: +81-532-44-6577
or +81-532-44-6546

Copyright © Toyohashi University of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Imaging

New tool allows scientists to visualize 'nanoscale' processes May 4th, 2016

FEI Launches Apreo Industry-Leading Versatile, High-Performance SEM: The Apreo SEM provides high-resolution surface information with excellent contrast, and the flexibility to accommodate a large range of samples, applications and conditions May 4th, 2016

Nuclear pores captured on film: Using an ultra fast-scanning atomic force microscope, researchers from the University of Basel have filmed 'living' nuclear pore complexes at work for the first time May 3rd, 2016

JPK reports on the use of a NanoWizard AFM system at the University of Kaiserslautern to study the interaction of bacteria with microstructured surfaces April 28th, 2016

News and information

New tool allows scientists to visualize 'nanoscale' processes May 4th, 2016

FEI Launches Apreo Industry-Leading Versatile, High-Performance SEM: The Apreo SEM provides high-resolution surface information with excellent contrast, and the flexibility to accommodate a large range of samples, applications and conditions May 4th, 2016

Chemistry

New tool allows scientists to visualize 'nanoscale' processes May 4th, 2016

Graphene/ Graphite

Cooling graphene-based film close to pilot-scale production April 30th, 2016

University of Illinois researchers create 1-step graphene patterning method April 27th, 2016

Atomic magnets using hydrogen and graphene April 27th, 2016

Discoveries

New tool allows scientists to visualize 'nanoscale' processes May 4th, 2016

A compact, efficient single photon source that operates at ambient temperatures on a chip: Highly directional single photon source concept is expected to lead to a significant progress in producing compact, cheap, and efficient sources of quantum information bits for future appls May 3rd, 2016

Nuclear pores captured on film: Using an ultra fast-scanning atomic force microscope, researchers from the University of Basel have filmed 'living' nuclear pore complexes at work for the first time May 3rd, 2016

Little ANTs: Researchers build the world's tiniest engine May 3rd, 2016

Announcements

New tool allows scientists to visualize 'nanoscale' processes May 4th, 2016

FEI Launches Apreo Industry-Leading Versatile, High-Performance SEM: The Apreo SEM provides high-resolution surface information with excellent contrast, and the flexibility to accommodate a large range of samples, applications and conditions May 4th, 2016

Nuclear pores captured on film: Using an ultra fast-scanning atomic force microscope, researchers from the University of Basel have filmed 'living' nuclear pore complexes at work for the first time May 3rd, 2016

Little ANTs: Researchers build the world's tiniest engine May 3rd, 2016

Tools

New tool allows scientists to visualize 'nanoscale' processes May 4th, 2016

FEI Launches Apreo Industry-Leading Versatile, High-Performance SEM: The Apreo SEM provides high-resolution surface information with excellent contrast, and the flexibility to accommodate a large range of samples, applications and conditions May 4th, 2016

Making invisible physics visible: The Jayich Lab has created a new sensor technology that captures nanoscale images with high spatial resolution and sensitivity May 2nd, 2016

Exploring phosphorene, a promising new material April 29th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic