Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Silver nanoparticle on graphene oxide support: An efficient catalyst for organic transformations

Figure 1: (Left) Transmission electron microscopy image of Ag-rGO nanohybrids. The inset shows the catalytic conversion of 4-nitrophenol to 4-aminophenol. Figure 2 (Right) Absorption spectra of 4-nitrophenol decreases in intensity and its color fades (inset) due to catalytic conversion.
Figure 1: (Left) Transmission electron microscopy image of Ag-rGO nanohybrids. The inset shows the catalytic conversion of 4-nitrophenol to 4-aminophenol. Figure 2 (Right) Absorption spectra of 4-nitrophenol decreases in intensity and its color fades (inset) due to catalytic conversion.

Abstract:
Silver (Ag) has a high catalytic activity towards many organic and inorganic transformations such as NOx reduction and catalytic oxidation of CO to CO2. In practical applications, catalysts like Ag are affixed to a substrate, usually a solid with a high surface area such as alumina or carbon.

Silver nanoparticle on graphene oxide support: An efficient catalyst for organic transformations

Toyohashi, Japan | Posted on March 2nd, 2014

To efficiently use Ag as a catalyst, its specific surface area must be maximized by reducing its particle size. Moreover, the development of simple and low-cost synthesis method is highly desired for practical applications.

Now, Tran Viet Thu and colleagues at Toyohashi University of Technology have shown that graphene oxide (GO) sheets can be used as an excellent support for the growth of Ag particles. GO was first prepared from commercial graphite by oxidation and exfoliation in water. Then the Ag-GO hybrids were prepared by a chemical reduction route using GO and silver nitrate as precursors, sodium borohydride as reducing agent, and trisodium citrate as stabilizer.

Transmission electron microscopy imaging showed very small size (3.6±0.6 nm) Ag particles to be decorated on GO sheets, compared with Ag particles synthesized without GO (tens of nm in size). This decrease in particle size means more Ag atoms were present at the surface and a large increase in the specific surface area. As a result, the Ag-GO hybrids were more efficient for the catalytic conversion of 4-nitrophenol (toxic pollutant) into 4-aminophenol, an intermediate for the production of several drugs. In addition, the Ag-GO hybrids exhibited improved catalytic activity compared to Ag particles synthesized without GO.

The research suggests a low-cost route for the synthesis of catalytic Ag-GO hybrids and highlights the promising use of GO as a support for other functional nanostructures.

Reference:
Authors: Tran Viet Thu, Pil Ju Ko, Nguyen Huu Huy Phuc, and Adarsh Sandhu.
Title of original paper: Room-temperature synthesis and enhanced catalytic performance of silver-reduced graphene oxide nanohybrids.
Journal, volume, pages and year: Journal of Nanoparticle Research 15 (10), 1-13 (2013).
Digital Object Identifier (DOI): 10.1007/s11051-013-1975-9
Affiliations: Electronics-Inspired Interdisciplinary Research Institute (EIIRIS) and Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology

####

For more information, please click here

Contacts:
Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku, Toyohashi, Aichi Prefecture, 441-8580, JAPAN
Enquiries
Toyohashi University of Technology, International Affairs Division

TEL: +81-532-44-6577
or +81-532-44-6546

Copyright © Toyohashi University of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Imaging

New technique allows researchers to scrape beyond the surface of nanomaterials: Using a new secondary-ion mass spectrometry technique, research are getting a fresh look at MXenes and MAX phases September 23rd, 2022

Silicon image sensor that computes: Device speeds up, simplifies image processing for autonomous vehicles and other applications August 26th, 2022

News and information

Solvent study solves solar cell durability puzzle: Rice-led project could make perovskite cells ready for prime time September 23rd, 2022

Heat-resistant nanophotonic material could help turn heat into electricity: The key to beating the heat is degrading the materials in advance September 23rd, 2022

Chicago Quantum Exchange welcomes six new partners highlighting quantum technology solutions, from Chicago and beyond September 23rd, 2022

“Twisty” photons could turbocharge next-gen quantum communication: Team’s on-chip technology uses orbital angular momentum to encode more information into a single photon September 23rd, 2022

Wrapping of nanosize copper cubes can help convert carbon dioxide into other chemicals September 23rd, 2022

Chemistry

Wrapping of nanosize copper cubes can help convert carbon dioxide into other chemicals September 23rd, 2022

New catalyst offers a more affordable way to produce hydrogen from seawater September 9th, 2022

Biology’s hardest working pigments and ‘MOFs’ might just save the climate: A range of processes that currently depend on fossil fuels but are really hard to electrify will depend on the development of genuinely clean fuels, and for that to happen, much more efficient catalysts wi July 22nd, 2022

First electric nanomotor made from DNA material: Synthetic rotary motors at the nanoscale perform mechanical work July 22nd, 2022

Graphene/ Graphite

Buckyballs on gold are less exotic than graphene July 22nd, 2022

A novel graphene based NiSe2 nanocrystalline array for efficient hydrogen evolution reaction July 15th, 2022

Discoveries

New technique allows researchers to scrape beyond the surface of nanomaterials: Using a new secondary-ion mass spectrometry technique, research are getting a fresh look at MXenes and MAX phases September 23rd, 2022

“Twisty” photons could turbocharge next-gen quantum communication: Team’s on-chip technology uses orbital angular momentum to encode more information into a single photon September 23rd, 2022

Upgrading your computer to quantum September 23rd, 2022

Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022

Announcements

Heat-resistant nanophotonic material could help turn heat into electricity: The key to beating the heat is degrading the materials in advance September 23rd, 2022

Chicago Quantum Exchange welcomes six new partners highlighting quantum technology solutions, from Chicago and beyond September 23rd, 2022

“Twisty” photons could turbocharge next-gen quantum communication: Team’s on-chip technology uses orbital angular momentum to encode more information into a single photon September 23rd, 2022

Wrapping of nanosize copper cubes can help convert carbon dioxide into other chemicals September 23rd, 2022

Tools

An alternative to MINFLUX that enables nanometre resolution in a confocal microscope August 26th, 2022

Atomic level deposition to extend Moore’s law and beyond July 15th, 2022

Nano-rust: Smart additive for autonomous temperature control: FAU researchers develop a new, versatile method for temperature monitoring in materials July 8th, 2022

New technology helps reveal inner workings of human genome June 24th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project