Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > SUNY CNSE Researchers to Present Nearly Two Dozen Technical Papers at Leading Lithography Conference: CNSE scientists to showcase industry-shaping research as part of SPIE Advanced Lithography 2014 forum

Abstract:
The SUNY College of Nanoscale Science and Engineering (CNSE) announced that its globally recognized, nanotechnology-based research will be featured at the world's leading lithography forum, with nearly two dozen technical papers accepted for presentation at SPIE Advanced Lithography 2014, held annually in California.

SUNY CNSE Researchers to Present Nearly Two Dozen Technical Papers at Leading Lithography Conference: CNSE scientists to showcase industry-shaping research as part of SPIE Advanced Lithography 2014 forum

Albany, NY | Posted on February 21st, 2014

"SUNY CNSE is once again excited to be playing a central role in moving the semiconductor industry forward through pioneering lithography research," said CNSE Executive Vice President of Innovation and Technology and Vice President for Research Dr. Michael Liehr. "The scientific papers that will be presented by CNSE's researchers at SPIE Advanced Lithography showcase the results of New York State's expanding nanotechnology-based ecosystem as it enables innovative semiconductor-based research, development, manufacturing, and commercialization and reveals the power of high-tech collaboration between CNSE and its corporate partners."

CNSE-led research papers that will be presented at SPIE Advanced Lithography cover technical areas that are critical for tackling current technological limitations that are impacting advanced lithography introduction. Topics include, "Methods of controlling cross-linking in negative tone resists," "Positive tone cross-linked resists based on photoacid inhibition of cross linking," "Understanding EUV resist mottling leading to better resolution and line-width roughness," "The study of EUV resist material to prevent out-of-band (OOB) effects," "Metrology for directed self-assembly block lithography using optical scatterometry," "A molecular inorganic approach to EUV photoresists," and "Study of alternative capping and absorber layers for EUV masks for sub-16 nm HP nodes," among others.

The CNSE-based research papers to be presented at SPIE Advanced Lithography result from the work of leading CNSE scientists and collaborating researchers from the NanoCollege's corporate partners, including SEMATECH, DOW Chemical, and Kumho Petrochemical Co., Ltd.

In addition, CNSE Center for Nanolithography Development Director Dr. Timothy Groves will present a keynote presentation titled, "E-beam lithography: The real case for manufacturing." Dr. Groves will discuss the benefits and challenges related to electron beam lithography. This is the technology which enables the writing of patterns to create computer chips with features below ten nanometers in size in high-volume manufacturing. E-beam lithography is well known for its ability to provide ultimate lithographic resolution without the need of a pre-existing mask, referred to as direct-write lithography. The historical Achilles's Heel of e-beam lithography has been low throughput. Dr. Groves presents a strong case for using massively high pixel parallelism with multiple electron sources to potentially resolve the throughput bottleneck. He argues that the financial investment needed to see this through to high-volume manufacturing is relatively modest, in light of the rapidly escalating cost associated with competing and incumbent exposure technologies. The end result will be enhanced computational performance at affordable cost to the end-user. Dr. Groves serves as Empire Innovation Professor of Nanoscale Science and CNSE Vice President of Academic Affairs.

The 40th annual SPIE Advanced Lithography conference is being held February 23 through 27 in California at the San Jose Convention Center and San Jose Marriott and is regarded as the world's leading nanoelectronics lithography conference and exhibition.

####

About SUNY College of Nanoscale Science and Engineering (CNSE)
The SUNY College of Nanoscale Science and Engineering (CNSE) is the world leader in the emerging disciplines of nanoscience, nanoengineering, nanobioscience, and nanoeconomics. CNSE represents the world’s most advanced university-driven research enterprise, with more than $20 billion in high-tech investments and over 300 corporate partners. The 1.3 million-square-foot Albany NanoTech megaplex is home to more than 3,100 scientists, researchers, engineers, students, and faculty. CNSE maintains a statewide footprint, operating the Smart Cities Technology Innovation Center (SCiTI) at Kiernan Plaza in Albany, the Solar Energy Development Center in Halfmoon, the Photovoltaic Manufacturing and Technology Development Facility in Rochester, and the Smart System Technology and Commercialization Center (STC) in Canandaigua. CNSE co-founded and manages the Computer Chip Commercialization Center (Quad-C) at SUNYIT, and is lead developer of the Marcy Nanocenter site in Utica, as well as the Riverbend Green Energy Hub, High-Tech Manufacturing Innovation Hub, and Medical Innovation and Commercialization Hub, all in Buffalo.

For more information, please click here

Contacts:
Jerry Gretzinger
CNSE
VP
Strategic Communications and Public Relations
(518) 956-7359

Copyright © SUNY College of Nanoscale Science and Engineering (CNSE)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

'Microcombing' creates stronger, more conductive carbon nanotube films May 5th, 2015

Testing Facility for Graphene Enhanced Composite Pipes May 5th, 2015

Arrowhead Completes Dosing Healthy Volunteers and Initiates Transition to Patients in Phase 1 Study of ARC-AAT May 5th, 2015

Silicon Storage Technology and GLOBALFOUNDRIES Announce Qualification of Automotive Grade 55nm Embedded Flash Memory Technology May 5th, 2015

Academic/Education

FEI Partners With the George Washington University to Equip New Science & Engineering Hall: Suite of new high-performance microscopes will be used for cutting-edge experiments at GW’s new research facility April 29th, 2015

Renishaw Raman systems used to study 2D materials at Boston University, Massachusetts, USA. April 28th, 2015

SUNY Poly and Sematech Announce Air Products Joins Cutting-Edge CMP Center At Albany Nanotech Complex April 28th, 2015

SEFCU, SUNY Poly CNSE Announce Winning Student-Led Teams in the 6th Annual $500,000 New York Business Plan Competition April 25th, 2015

Chip Technology

Silicon Storage Technology and GLOBALFOUNDRIES Announce Qualification of Automotive Grade 55nm Embedded Flash Memory Technology May 5th, 2015

Defects in atomically thin semiconductor emit single photons: Researchers create optically active quantum dots in 2-D semiconductor for the first time; may have applications for integrated photonics May 4th, 2015

From brittle to plastic in 1 breath: Rice University theorists show environments can alter 2-D materials' basic properties May 4th, 2015

Nanometrics to Present at the B. Riley & Co. 16th Annual Investor Conference May 2nd, 2015

Announcements

'Microcombing' creates stronger, more conductive carbon nanotube films May 5th, 2015

Testing Facility for Graphene Enhanced Composite Pipes May 5th, 2015

Arrowhead Completes Dosing Healthy Volunteers and Initiates Transition to Patients in Phase 1 Study of ARC-AAT May 5th, 2015

Silicon Storage Technology and GLOBALFOUNDRIES Announce Qualification of Automotive Grade 55nm Embedded Flash Memory Technology May 5th, 2015

Events/Classes

Arrowhead to Report Fiscal 2015 Second Quarter Financial Results May 4th, 2015

Nanometrics to Present at the B. Riley & Co. 16th Annual Investor Conference May 2nd, 2015

No Hogwarts invitation required: Invisibility cloaks move into the real-life classroom: A new solid-state device can demonstrate the physical principles of invisibility cloaks without special equipment or magic spells April 30th, 2015

A phone with the ultimate macro feature: New attachment turns a smartphone into a microscope that can image and size DNA molecules 50,000 times thinner than a human hair April 29th, 2015

Printing/Lithography/Inkjet/Inks

Northwestern scientists develop first liquid nanolaser: Technology could lead to new way of doing 'lab on a chip' medical diagnostics April 25th, 2015

New class of 3D-printed aerogels improve energy storage April 22nd, 2015

Printing Silicon on Paper, with Lasers April 21st, 2015

Advances in molecular electronics: Lights on -- molecule on: Researchers from Dresden and Konstanz succeed in light-controlled molecule switching April 20th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project