Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > SUNY CNSE Researchers to Present Nearly Two Dozen Technical Papers at Leading Lithography Conference: CNSE scientists to showcase industry-shaping research as part of SPIE Advanced Lithography 2014 forum

Abstract:
The SUNY College of Nanoscale Science and Engineering (CNSE) announced that its globally recognized, nanotechnology-based research will be featured at the world's leading lithography forum, with nearly two dozen technical papers accepted for presentation at SPIE Advanced Lithography 2014, held annually in California.

SUNY CNSE Researchers to Present Nearly Two Dozen Technical Papers at Leading Lithography Conference: CNSE scientists to showcase industry-shaping research as part of SPIE Advanced Lithography 2014 forum

Albany, NY | Posted on February 21st, 2014

"SUNY CNSE is once again excited to be playing a central role in moving the semiconductor industry forward through pioneering lithography research," said CNSE Executive Vice President of Innovation and Technology and Vice President for Research Dr. Michael Liehr. "The scientific papers that will be presented by CNSE's researchers at SPIE Advanced Lithography showcase the results of New York State's expanding nanotechnology-based ecosystem as it enables innovative semiconductor-based research, development, manufacturing, and commercialization and reveals the power of high-tech collaboration between CNSE and its corporate partners."

CNSE-led research papers that will be presented at SPIE Advanced Lithography cover technical areas that are critical for tackling current technological limitations that are impacting advanced lithography introduction. Topics include, "Methods of controlling cross-linking in negative tone resists," "Positive tone cross-linked resists based on photoacid inhibition of cross linking," "Understanding EUV resist mottling leading to better resolution and line-width roughness," "The study of EUV resist material to prevent out-of-band (OOB) effects," "Metrology for directed self-assembly block lithography using optical scatterometry," "A molecular inorganic approach to EUV photoresists," and "Study of alternative capping and absorber layers for EUV masks for sub-16 nm HP nodes," among others.

The CNSE-based research papers to be presented at SPIE Advanced Lithography result from the work of leading CNSE scientists and collaborating researchers from the NanoCollege's corporate partners, including SEMATECH, DOW Chemical, and Kumho Petrochemical Co., Ltd.

In addition, CNSE Center for Nanolithography Development Director Dr. Timothy Groves will present a keynote presentation titled, "E-beam lithography: The real case for manufacturing." Dr. Groves will discuss the benefits and challenges related to electron beam lithography. This is the technology which enables the writing of patterns to create computer chips with features below ten nanometers in size in high-volume manufacturing. E-beam lithography is well known for its ability to provide ultimate lithographic resolution without the need of a pre-existing mask, referred to as direct-write lithography. The historical Achilles's Heel of e-beam lithography has been low throughput. Dr. Groves presents a strong case for using massively high pixel parallelism with multiple electron sources to potentially resolve the throughput bottleneck. He argues that the financial investment needed to see this through to high-volume manufacturing is relatively modest, in light of the rapidly escalating cost associated with competing and incumbent exposure technologies. The end result will be enhanced computational performance at affordable cost to the end-user. Dr. Groves serves as Empire Innovation Professor of Nanoscale Science and CNSE Vice President of Academic Affairs.

The 40th annual SPIE Advanced Lithography conference is being held February 23 through 27 in California at the San Jose Convention Center and San Jose Marriott and is regarded as the world's leading nanoelectronics lithography conference and exhibition.

####

About SUNY College of Nanoscale Science and Engineering (CNSE)
The SUNY College of Nanoscale Science and Engineering (CNSE) is the world leader in the emerging disciplines of nanoscience, nanoengineering, nanobioscience, and nanoeconomics. CNSE represents the world’s most advanced university-driven research enterprise, with more than $20 billion in high-tech investments and over 300 corporate partners. The 1.3 million-square-foot Albany NanoTech megaplex is home to more than 3,100 scientists, researchers, engineers, students, and faculty. CNSE maintains a statewide footprint, operating the Smart Cities Technology Innovation Center (SCiTI) at Kiernan Plaza in Albany, the Solar Energy Development Center in Halfmoon, the Photovoltaic Manufacturing and Technology Development Facility in Rochester, and the Smart System Technology and Commercialization Center (STC) in Canandaigua. CNSE co-founded and manages the Computer Chip Commercialization Center (Quad-C) at SUNYIT, and is lead developer of the Marcy Nanocenter site in Utica, as well as the Riverbend Green Energy Hub, High-Tech Manufacturing Innovation Hub, and Medical Innovation and Commercialization Hub, all in Buffalo.

For more information, please click here

Contacts:
Jerry Gretzinger
CNSE
VP
Strategic Communications and Public Relations
(518) 956-7359

Copyright © SUNY College of Nanoscale Science and Engineering (CNSE)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Dressing a metal in various colors: DGIST research developed a technology to coat metal with several nanometers of semiconducting materials January 17th, 2017

Nanoparticle exposure can awaken dormant viruses in the lungs January 17th, 2017

Nanoscale view of energy storage January 16th, 2017

Seeing the quantum future... literally: What if big data could help you see the future and prevent your mobile phone from breaking before it happened? January 16th, 2017

Academic/Education

Oxford Nanoimaging report on how the Nanoimager, a desktop microscope delivering single molecule, super-resolution performance, is being applied at the MRC Centre for Molecular Bacteriology & Infection November 22nd, 2016

The University of Applied Sciences in Upper Austria uses Deben tensile stages as an integral part of their computed tomography research and testing facility October 18th, 2016

Enterprise In Space Partners with Sketchfab and 3D Hubs for NewSpace Education October 13th, 2016

New Agricultural Research Center Debuts at UCF October 12th, 2016

Chip Technology

Dressing a metal in various colors: DGIST research developed a technology to coat metal with several nanometers of semiconducting materials January 17th, 2017

Seeing the quantum future... literally: What if big data could help you see the future and prevent your mobile phone from breaking before it happened? January 16th, 2017

NUS researchers achieve major breakthrough in flexible electronics: New classes of printable electrically conducting polymer materials make better electrodes for plastic electronics and advanced semiconductor devices January 14th, 2017

Nanoscale Modifications can be used to Engineer Electrical Contacts for Nanodevices January 13th, 2017

Announcements

Dressing a metal in various colors: DGIST research developed a technology to coat metal with several nanometers of semiconducting materials January 17th, 2017

Nanoparticle exposure can awaken dormant viruses in the lungs January 17th, 2017

Nanoscale view of energy storage January 16th, 2017

Seeing the quantum future... literally: What if big data could help you see the future and prevent your mobile phone from breaking before it happened? January 16th, 2017

Events/Classes

Harris & Harris Group Issues Reminder for Shareholder Update Call on January 10, 2017 January 10th, 2017

Nanometrics to Present at the 19th Annual Needham Growth Conference December 22nd, 2016

Leti Will Demonstrate Fusion of Autonomous Car’s Senses: SIGMA FUSION’s Efficient, Sensor-based System Fits in a Microcontroller Platform, Anticipates Safety Requirements December 13th, 2016

Imec and Holst Centre Introduce World’s First Solid-State Multi-Ion Sensor for Internet-of-Things Applications December 13th, 2016

Printing/Lithography/Inkjet/Inks/Bio-printing

NUS researchers achieve major breakthrough in flexible electronics: New classes of printable electrically conducting polymer materials make better electrodes for plastic electronics and advanced semiconductor devices January 14th, 2017

Nanowire 'inks' enable paper-based printable electronics: Highly conductive films make functional circuits without adding high heat January 4th, 2017

Nanocubes simplify printing and imaging in color and infrared: New technology allows multispectral reactions on a single chip December 15th, 2016

Bumpy surfaces, graphene beat the heat in devices: Rice University theory shows way to enhance heat sinks in future microelectronics November 29th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project