Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Nanoscale pillars could radically improve conversion of heat to electricity

 This shows an atomic-scale model of a nanophononic metamaterial. The vibrations caused by the pillar slow down the horizontal flow of heat through the thin film.

Credit: Mahmoud Hussein
This shows an atomic-scale model of a nanophononic metamaterial. The vibrations caused by the pillar slow down the horizontal flow of heat through the thin film.

Credit: Mahmoud Hussein

Abstract:
University of Colorado Boulder scientists have found a creative way to radically improve thermoelectric materials, a finding that could one day lead to the development of improved solar panels, more energy-efficient cooling equipment, and even the creation of new devices that could turn the vast amounts of heat wasted at power plants into more electricity.

Nanoscale pillars could radically improve conversion of heat to electricity

Boulder, CO | Posted on February 20th, 2014

The technique—building an array of tiny pillars on top of a sheet of thermoelectric material—represents an entirely new way of attacking a century-old problem, said Mahmoud Hussein, an assistant professor of aerospace engineering sciences who pioneered the discovery.

The thermoelectric effect, first discovered in the 1800s, refers to the ability to generate an electric current from a temperature difference between one side of a material and the other. Conversely, applying an electric voltage to a thermoelectric material can cause one side of the material to heat up while the other stays cool, or, alternatively, one side to cool down while the other stays hot.

Devices that incorporate thermoelectric materials have been used in both ways: to create electricity from a heat source, such as the sun, for example, or to cool precision instruments by consuming electricity.

However, the widespread use of thermoelectric materials has been hindered by a fundamental problem that has kept scientists busy for decades. Materials that allow electricity to flow through them also allow heat to flow through them. This means that at the same time a temperature difference creates an electric potential, the temperature difference itself begins to dissipate, weakening the current it created.

Until the 1990s, scientists addressed this problem by looking for materials with intrinsic properties that allowed electricity to flow more easily than heat.

"Until 20 years ago, people were looking at the chemistry of the materials," Hussein said. "And then nanotechnology came into the picture and allowed researchers to engineer the materials for the properties they wanted."

Using nanotechnology, material physicists began creating barriers in thermoelectric materials—such as holes or particles—that impeded the flow of heat more than the flow of electricity. But even under the best scenario, the flow of electrons—which carry electric energy—also was slowed.

In a new study published in the journal Physical Review Letters, Hussein and doctoral student Bruce Davis demonstrate that nanotechnology could be used in an entirely different way to slow the heat transfer without affecting the motion of electrons.

The new concept involves building an array of nanoscale pillars on top of a sheet of a thermoelectric material, such as silicon, to form what the authors call a "nanophononic metamaterial." Heat is carried through the material as a series of vibrations, known as phonons. The atoms making up the miniature pillars also vibrate at a variety of frequencies. Davis and Hussein used a computer model to show that the vibrations of the pillars would interact with the vibrations of the phonons, slowing down the flow of heat. The pillar vibrations are not expected to affect the electric current.

The team estimates that their nanoscale pillars could reduce the heat flow through a material by half, but the reduction could be significantly stronger because the calculations were made very conservatively, Hussein said.

"If we can improve thermoelectric energy conversion significantly, there will be all kinds of important practical applications," Hussein said. These include recapturing the waste heat emitted by different types of equipment—from laptops to cars to power plants—and turning that heat into electricity. Better thermoelectrics also could vastly improve the efficiency of solar panels and refrigeration devices.

The next step is for Hussein to partner with colleagues in the physics department and other institutions to fabricate the pillars so that the idea can be tested in the lab. "This is still early in the phase of laboratory demonstration but the remaining steps are within reach."

Hussein also hopes to further refine the models he used to gain additional insight into the underlying physics. "A team of highly motivated Ph.D. students are working with me around the clock on this project," he said.

###

The research was funded by the National Science Foundation.

####

For more information, please click here

Contacts:
Mahmoud Hussein

303-492-3177

Copyright © University of Colorado at Boulder

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Read the study at:

Related News Press

News and information

Maximum Precision in 3D Printing: New complete solution makes additive manufacturing standard for microfabrication February 26th, 2015

Real-time observation of bond formation by using femtosecond X-ray liquidography February 26th, 2015

Bruker-Sponsored Sixth AFM BioMed Conference Highlights Increasing Impact of AFM in Biological Applications February 26th, 2015

Graphene shows potential as novel anti-cancer therapeutic strategy: University of Manchester scientists have used graphene to target and neutralise cancer stem cells while not harming other cells February 26th, 2015

Thin films

Researchers enable solar cells to use more sunlight February 25th, 2015

Detecting defects at the nanoscale will profit solar panel production: Researcher Mohamed Elrawemi develops new technologies for defects in thin films, vital in products as printed electronics and solar panels February 24th, 2015

Extreme-temperature electronics: Futuristic material molybdenum disulfide may find new application for thin-film transistors in extremely high-temperature electronics and sensors February 11th, 2015

Dance of the nanovortices February 2nd, 2015

Govt.-Legislation/Regulation/Funding/Policy

Warming up the world of superconductors: Clusters of aluminum metal atoms become superconductive at surprisingly high temperatures February 25th, 2015

SUNY Poly CNSE Researchers and Corporate Partners to Present Forty Papers at Globally Recognized Lithography Conference: SUNY Poly CNSE Research Group Awarded Both ‘Best Research Paper’ and ‘Best Research Poster’ at SPIE Advanced Lithography 2015 forum February 25th, 2015

European roadmap for graphene science and technology published February 25th, 2015

Cutting-edge technology optimizes cancer therapy with nanomedicine drug combinations: UCLA bioengineers develop platform that offers personalized approach to treatment February 24th, 2015

Discoveries

Real-time observation of bond formation by using femtosecond X-ray liquidography February 26th, 2015

Graphene shows potential as novel anti-cancer therapeutic strategy: University of Manchester scientists have used graphene to target and neutralise cancer stem cells while not harming other cells February 26th, 2015

Simple, Cost-Efficient Method Used to Determine Toxicants Growing in Pistachio February 26th, 2015

Warming up the world of superconductors: Clusters of aluminum metal atoms become superconductive at surprisingly high temperatures February 25th, 2015

Materials/Metamaterials

Graphene shows potential as novel anti-cancer therapeutic strategy: University of Manchester scientists have used graphene to target and neutralise cancer stem cells while not harming other cells February 26th, 2015

In quest for better lithium-air batteries, chemists boost carbon's stability: Nanoparticle coatings improve stability, cyclability of '3DOm' carbon February 25th, 2015

Learning by eye: Silicon micro-funnels increase the efficiency of solar cells February 25th, 2015

Magnetic nanoparticles enhance performance of solar cells X-ray study points the way to higher energy yields February 25th, 2015

Announcements

Maximum Precision in 3D Printing: New complete solution makes additive manufacturing standard for microfabrication February 26th, 2015

Real-time observation of bond formation by using femtosecond X-ray liquidography February 26th, 2015

Bruker-Sponsored Sixth AFM BioMed Conference Highlights Increasing Impact of AFM in Biological Applications February 26th, 2015

Graphene shows potential as novel anti-cancer therapeutic strategy: University of Manchester scientists have used graphene to target and neutralise cancer stem cells while not harming other cells February 26th, 2015

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Real-time observation of bond formation by using femtosecond X-ray liquidography February 26th, 2015

Graphene shows potential as novel anti-cancer therapeutic strategy: University of Manchester scientists have used graphene to target and neutralise cancer stem cells while not harming other cells February 26th, 2015

Simple, Cost-Efficient Method Used to Determine Toxicants Growing in Pistachio February 26th, 2015

Learning by eye: Silicon micro-funnels increase the efficiency of solar cells February 25th, 2015

Energy

In quest for better lithium-air batteries, chemists boost carbon's stability: Nanoparticle coatings improve stability, cyclability of '3DOm' carbon February 25th, 2015

New nanowire structure absorbs light efficiently: Dual-type nanowire arrays can be used in applications such as LEDs and solar cells February 25th, 2015

Learning by eye: Silicon micro-funnels increase the efficiency of solar cells February 25th, 2015

Magnetic nanoparticles enhance performance of solar cells X-ray study points the way to higher energy yields February 25th, 2015

Photonics/Optics/Lasers

Rice's Stephan Link honored for nanoscience research: The Welch Foundation honors ‘rising star’ with $100,000 Hackerman Award February 26th, 2015

Maximum Precision in 3D Printing: New complete solution makes additive manufacturing standard for microfabrication February 26th, 2015

Learning by eye: Silicon micro-funnels increase the efficiency of solar cells February 25th, 2015

Optical nanoantennas set the stage for a NEMS lab-on-a-chip revolution February 24th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE