Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button

Home > Press > Gecko-inspired Adhesion: Self-cleaning and Reliable

Glass spheres among microhairs that are mushroom-shaped to improve adhesive force.SEM: Michael Röhrig, KIT
Glass spheres among microhairs that are mushroom-shaped to improve adhesive force.

SEM: Michael Röhrig, KIT

Abstract:
Geckos outclass adhesive tapes in one respect: Even after repeated contact with dirt and dust do their feet perfectly adhere to smooth surfaces. Researchers of the KIT and the Carnegie Mellon University, Pittsburgh, have now developed the first adhesive tape that does not only adhere to a surface as reliably as the toes of a gecko, but also possesses similar self-cleaning properties. Using such a tape, food packagings or bandages might be opened and closed several times. The results are published in the "Interface" journal of the British Royal Society. DOI: rsif.2013.1205

Gecko-inspired Adhesion: Self-cleaning and Reliable

Karlsruhe, Germany | Posted on February 20th, 2014

When moving forwards, the gecko‘s toes drag across a part of the surface. As a result of this lateral friction contact, larger dirt particles are removed. Smaller particles deposit among the setae on the sole and in the skinfolds below. In an experiment, the researchers have proved that both mechanisms provide for 95% of the self-cleaning effect. "This effect is determined by the ratio between particle size and setae diameter", Dr. Hendrik Hölscher of KIT's Institute of Microstructure Technology (IMT) says.

For their experiments, the scientists used elastic microhairs of variable size. Instead of dirt particles, they employed glass spheres of micrometer size (10-6 meters) and distributed them on a smooth plate. To simulate the steps made by a gecko, they pressed an artificial adhesive tape covered by microhairs onto the plate, shifted it laterally, and lifted the tape off again. This "load-drag-unload" cycle was repeated several times. In parallel, adhesive force was measured.

When the diameter of the spheres exceeded that of the microhairs, the adhesive force disappeared after the first contact ("load") - as in case of an ordinary adhesive tape. After eight to ten test cycles, however, the gecko-inspired adhesive tape reached 80 to 100 percent of its original power again. "In the long term, this effect might be used to develop a low-cost alternative to hook and loop fasteners," Hölscher says. "Such a tape might be applied in the sports sector, in medicine, automotive industry or aerospace technology," Metin Sitti, Professor of the Carnegie Mellon University, adds.

When the size of the spheres was smaller than the diameter of the microhairs, the researchers succeeded in restoring one third of the original adhesive force only. "For the perfect gecko-inspired adhesive tape, we therefore need fibers in the nanometer range (10-9 meters), which are smaller than most dirt particles", Dr. Michael Röhrig, IMT scientist, emphasizes. The skinfolds of the gecko have already been reproduced by wide grooves between narrow rows of hair. They offer enough space for the fine dust to deposit. Tests using real dirt particles of variable shape and size and particles made of various materials are planned to be carried out in the near future.

####

About Karlsruhe Institute of Technology
The Karlsruhe Institute of Technology (KIT) is the merger of the Forschungszentrum Karlsruhe, member of the Helmholtz Association, and the Universität Karlsruhe. This merger will give rise to an institution of internationally excellent research and teaching in natural and engineering sciences. In total, the KIT has 8000 employees and an annual budget of 700 million Euros. The KIT focuses on the knowledge triangle of research – teaching – innovation.

The Karlsruhe institution is a leading European energy research center and plays a visible role in nanosciences worldwide. KIT sets new standards in teaching and promotion of young scientists and attracts top scientists from all over the world. Moreover, KIT is a leading innovation partner of industry.

For more information, please click here

Contacts:
Monika Landgraf
Karlsruhe Institut of Technology
+49 721 608 47414

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Full bibliographic informationMengüç Y, Rohrig M, Abusomwan U, Hölscher H, Sitti M. 2014 Staying sticky: contact self-cleaning of gecko-inspired adhesives. J. R. Soc. Interface 20131205:

Related News Press

News and information

Dirty to drinkable: Engineers develop novel hybrid nanomaterials to transform water July 28th, 2016

Thomas Swan and NGI announce unique partnership July 28th, 2016

Penn team uses nanoparticles to break up plaque and prevent cavities July 28th, 2016

Beating the heat a challenge at the nanoscale: Rice University scientists detect thermal boundary that hinders ultracold experiments July 28th, 2016

Discoveries

Dirty to drinkable: Engineers develop novel hybrid nanomaterials to transform water July 28th, 2016

Penn team uses nanoparticles to break up plaque and prevent cavities July 28th, 2016

Beating the heat a challenge at the nanoscale: Rice University scientists detect thermal boundary that hinders ultracold experiments July 28th, 2016

Enhancing molecular imaging with light: New technology platform increases spectroscopic resolution by 4 fold July 27th, 2016

Materials/Metamaterials

WSU researchers 'watch' crystal structure change in real time: Breakthrough made possible by new Argonne facility July 27th, 2016

New lithium-oxygen battery greatly improves energy efficiency, longevity: New chemistry could overcome key drawbacks of lithium-air batteries July 26th, 2016

Ultra-flat circuits will have unique properties: Rice University lab studies 2-D hybrids to see how they differ from common electronics July 25th, 2016

Attosecond physics: Mapping electromagnetic waveforms July 25th, 2016

Announcements

Dirty to drinkable: Engineers develop novel hybrid nanomaterials to transform water July 28th, 2016

Thomas Swan and NGI announce unique partnership July 28th, 2016

Penn team uses nanoparticles to break up plaque and prevent cavities July 28th, 2016

Beating the heat a challenge at the nanoscale: Rice University scientists detect thermal boundary that hinders ultracold experiments July 28th, 2016

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Dirty to drinkable: Engineers develop novel hybrid nanomaterials to transform water July 28th, 2016

Penn team uses nanoparticles to break up plaque and prevent cavities July 28th, 2016

Beating the heat a challenge at the nanoscale: Rice University scientists detect thermal boundary that hinders ultracold experiments July 28th, 2016

WSU researchers 'watch' crystal structure change in real time: Breakthrough made possible by new Argonne facility July 27th, 2016

Food/Agriculture/Supplements

The NanoWizard® AFM from JPK is applied for interdisciplinary research at the University of South Australia for applications including smart wound healing and how plants can protect themselves from toxins July 26th, 2016

Graphene-infused packaging is a million times better at blocking moisture July 15th, 2016

The use of nanoparticles and bioremediation to decontaminate polluted soils June 14th, 2016

VentureLab nanotechnology startup wins TechConnect Innovation Award June 2nd, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic