Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Stirring-up atomtronics in a quantum circuit: What's so 'super' about this superfluid

Cover of Nature highlighting this research, courtesy of Nature Press Office. Image credit, Edwards/JQI
Cover of Nature highlighting this research, courtesy of Nature Press Office.

Image credit, Edwards/JQI

Abstract:
Atomtronics is an emerging technology whereby physicists use ensembles of atoms to build analogs to electronic circuit elements. Modern electronics relies on utilizing the charge properties of the electron. Using lasers and magnetic fields, atomic systems can be engineered to have behavior analogous to that of electrons, making them an exciting platform for studying and generating alternatives to charge-based electronics.

Stirring-up atomtronics in a quantum circuit: What's so 'super' about this superfluid

College Park, MD | Posted on February 12th, 2014

Using a superfluid atomtronic circuit, JQI physicists, led by Gretchen Campbell, have demonstrated a tool that is critical to electronics: hysteresis. This is the first time that hysteresis has been observed in an ultracold atomic gas. This research is published in the February 13 issue of Nature magazine, whose cover features an artistic impression of the atomtronic system.

Lead author Stephen Eckel explains, "Hysteresis is ubiquitous in electronics. For example, this effect is used in writing information to hard drives as well as other memory devices. It's also used in certain types of sensors and in noise filters such as the Schmitt trigger." Here is an example demonstrating how this common trigger is employed to provide hysteresis. Consider an air-conditioning thermostat, which contains a switch to regulate a fan. The user sets a desired temperature. When the room air exceeds this temperature, a fan switches on to cool the room. When does the fan know to turn off? The fan actually brings the temperature lower to a different set-point before turning off. This mismatch between the turn-on and turn-off temperature set-points is an example of hysteresis and prevents fast switching of the fan, which would be highly inefficient.

In the above example, the hysteresis is programmed into the electronic circuit. In this research, physicists observed hysteresis that is an inherent natural property of a quantum fluid. 400,000 sodium atoms are cooled to condensation, forming a type of quantum matter called a Bose-Einstein condensate (BEC), which has a temperature around 0.000000100 Kelvin (0 Kelvin is absolute zero). The atoms reside in a doughnut-shaped trap that is only marginally bigger than a human red blood cell. A focused laser beam intersects the ring trap and is used to stir the quantum fluid around the ring.

While BECs are made from a dilute gas of atoms less dense than air, they have unusual collective properties, making them more like a fluid—or in this case, a superfluid. What does this mean? First discovered in liquid helium in 1937, this form of matter, under some conditions, can flow persistently, undeterred by friction. A consequence of this behavior is that the fluid flow or rotational velocity around the team's ring trap is quantized, meaning it can only spin at certain specific speeds. This is unlike a non-quantum (classical) system, where its rotation can vary continuously and the viscosity of the fluid plays a substantial role.

Because of the characteristic lack of viscosity in a superfluid, stirring this system induces drastically different behavior. Here, physicists stir the quantum fluid, yet the fluid does not speed up continuously. At a critical stir-rate the fluid jumps from having no rotation to rotating at a fixed velocity. The stable velocities are a multiple of a quantity that is determined by the trap size and the atomic mass.

This same laboratory has previously demonstrated persistent currents and this quantized velocity behavior in superfluid atomic gases. Now they have explored what happens when they try to stop the rotation, or reverse the system back to its initial velocity state. Without hysteresis, they could achieve this by reducing the stir-rate back below the critical value causing the rotation to cease. In fact, they observe that they have to go far below the critical stir-rate, and in some cases reverse the direction of stirring to see the fluid return to the lower quantum velocity state.

Controlling this hysteresis opens up new possibilities for building a practical atomtronic device. For instance, there are specialized superconducting electronic circuits that are precisely controlled by magnetic fields and in turn, small magnetic fields affect the behavior of the circuit itself. Thus, these devices, called SQuIDs (superconducting quantum interference devices), are used as magnetic field sensors. "Our current circuit is analogous to a specific kind of SQuID called an RF-SQuID", says Campbell. "In our atomtronic version of the SQuID, the focused laser beam induces rotation when the speed of the laser beam "spoon" hits a critical value. We can control where that transition occurs by varying the properties of the "spoon". Thus, the atomtronic circuit could be used as an inertial sensor."

This two-velocity state quantum system has the ingredients for making a qubit. However, this idea has some significant obstacles to overcome before it could be a viable choice. Atomtronics is a young technology and physicists are still trying to understand these systems and their potential. One current focus for Campbell's team includes exploring the properties and capabilities of the novel device by adding complexities such as a second ring.

###

This research was supported by the NSF Physics Frontier Center at JQI.

####

For more information, please click here

Contacts:
Gretchen Campbell

Copyright © Joint Quantum Institute

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

"Hysteresis in a quantized superfluid ‘atomtronic’ circuit," S. Eckel, J.G. Lee, F. Jendrzejewski, N. Murray, C.W. Clark, C.J. Lobb, W.D. Phillips, M. Edwards, G.K. Campbell, Nature, 506, 200 (2014):

"Driving Phase Slips in a Superfluid Atom Circuit with a Rotating Weak Link," K.C. Wright, R.B. Blakestad, C.J. Lobb, W.D. Phillips, G.K. Campbell, Phys. Rev. Lett., 110, 060504 (2013):

"Observation of Persistent Flow of a Bose-Einstein Condensate in a Toroidal Trap," C. Ryu, M.F. Andersen, P. Cladé, V. Natarajan, K. Helmerson, W.D. Phillips, Phys. Rev. Lett., 99, (2007):

VIDEO: This is an animation showing a laser beam stirring a ring shaped quantum gas:

Related News Press

News and information

Graphene Shows Promise In Eradication Of Stem Cancer Cells March 1st, 2015

Novel Method to Determine Optical Purity of Drug Components March 1st, 2015

Scientific breakthrough in rechargeable batteries: Researchers from Singapore and Québec Team Up to Develop Next-Generation Materials to Power Electronic Devices and Electric Vehicles February 28th, 2015

First detailed microscopy evidence of bacteria at the lower size limit of life: Berkeley Lab research provides comprehensive description of ultra-small bacteria February 28th, 2015

Untangling DNA with a droplet of water, a pipet and a polymer: With the 'rolling droplet technique,' a DNA-injected water droplet rolls like a ball over a platelet, sticking the DNA to the plate surface February 27th, 2015

Physics

Moving molecule writes letters: Caging of molecules allows investigation of equilibrium thermodynamics February 27th, 2015

Real-time observation of bond formation by using femtosecond X-ray liquidography February 26th, 2015

Warming up the world of superconductors: Clusters of aluminum metal atoms become superconductive at surprisingly high temperatures February 25th, 2015

Quantum many-body systems on the way back to equilibrium: Advances in experimental and theoretical physics enable a deeper understanding of the dynamics and properties of quantum many-body systems February 25th, 2015

Videos/Movies

Maximum Precision in 3D Printing: New complete solution makes additive manufacturing standard for microfabrication February 26th, 2015

Superconductivity

Warming up the world of superconductors: Clusters of aluminum metal atoms become superconductive at surprisingly high temperatures February 25th, 2015

Ultra-thin nanowires can trap electron 'twisters' that disrupt superconductors February 24th, 2015

Simulating superconducting materials with ultracold atoms: Rice physicists build superconductor analog, observe antiferromagnetic order February 23rd, 2015

Molecular Nanotechnology

Monitoring the real-time deformation of carbon nanocoils under axial loading February 18th, 2015

Nanotechnology: Better measurements of single molecule circuits February 18th, 2015

Half spheres for molecular circuits: Corannulene shows promising electronic properties February 17th, 2015

Tiny robotic 'hands' could improve cancer diagnostics, drug delivery February 4th, 2015

Chip Technology

New nanowire structure absorbs light efficiently: Dual-type nanowire arrays can be used in applications such as LEDs and solar cells February 25th, 2015

SUNY Poly CNSE Researchers and Corporate Partners to Present Forty Papers at Globally Recognized Lithography Conference: SUNY Poly CNSE Research Group Awarded Both ‘Best Research Paper’ and ‘Best Research Poster’ at SPIE Advanced Lithography 2015 forum February 25th, 2015

Ultra-thin nanowires can trap electron 'twisters' that disrupt superconductors February 24th, 2015

Silicon Catalyst Announces Partnership With imec to Support Semiconductor Start-Ups February 23rd, 2015

Quantum Computing

Waterloo invention advances quantum computing research: New device, which will be used in labs around the world to develop quantum technologies, produces fragile entangled photons in a more efficient way February 16th, 2015

Quantum research past, present and future for discussion at AAAS February 16th, 2015

Exotic states materialize with supercomputers February 12th, 2015

Analogue quantum computers: Still wishful thinking? Many challenges lie ahead before quantum annealing, the analogue version of quantum computation, contributes to solve combinatorial optimisation problems February 12th, 2015

Sensors

Penn researchers develop new technique for making molybdenum disulfide: Extra control over monolayer material with advantages over graphene February 19th, 2015

Researchers build atomically thin gas and chemical sensors: Sensors made of molybdenum disulfide are small, thin and have a high level of selectivity when detecting gases and chemicals February 19th, 2015

Production of Biosensor in Iran to Detect Oxalic Acid February 18th, 2015

Improved fire detection with new ultra-sensitive, ultraviolet light sensor February 17th, 2015

Discoveries

Graphene Shows Promise In Eradication Of Stem Cancer Cells March 1st, 2015

Novel Method to Determine Optical Purity of Drug Components March 1st, 2015

First detailed microscopy evidence of bacteria at the lower size limit of life: Berkeley Lab research provides comprehensive description of ultra-small bacteria February 28th, 2015

Moving molecule writes letters: Caging of molecules allows investigation of equilibrium thermodynamics February 27th, 2015

Announcements

Graphene Shows Promise In Eradication Of Stem Cancer Cells March 1st, 2015

Novel Method to Determine Optical Purity of Drug Components March 1st, 2015

Scientific breakthrough in rechargeable batteries: Researchers from Singapore and Québec Team Up to Develop Next-Generation Materials to Power Electronic Devices and Electric Vehicles February 28th, 2015

First detailed microscopy evidence of bacteria at the lower size limit of life: Berkeley Lab research provides comprehensive description of ultra-small bacteria February 28th, 2015

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Novel Method to Determine Optical Purity of Drug Components March 1st, 2015

Moving molecule writes letters: Caging of molecules allows investigation of equilibrium thermodynamics February 27th, 2015

Untangling DNA with a droplet of water, a pipet and a polymer: With the 'rolling droplet technique,' a DNA-injected water droplet rolls like a ball over a platelet, sticking the DNA to the plate surface February 27th, 2015

Graphene shows potential as novel anti-cancer therapeutic strategy: University of Manchester scientists have used graphene to target and neutralise cancer stem cells while not harming other cells February 26th, 2015

Photonics/Optics/Lasers

Leti to Offer Updates on Silicon Photonics Successes at OFC in LA February 27th, 2015

Rice's Stephan Link honored for nanoscience research: The Welch Foundation honors ‘rising star’ with $100,000 Hackerman Award February 26th, 2015

Maximum Precision in 3D Printing: New complete solution makes additive manufacturing standard for microfabrication February 26th, 2015

Learning by eye: Silicon micro-funnels increase the efficiency of solar cells February 25th, 2015

Quantum nanoscience

Quantum many-body systems on the way back to equilibrium: Advances in experimental and theoretical physics enable a deeper understanding of the dynamics and properties of quantum many-body systems February 25th, 2015

Quantum research past, present and future for discussion at AAAS February 16th, 2015

Exotic states materialize with supercomputers February 12th, 2015

Graphene displays clear prospects for flexible electronics February 2nd, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE