Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Graphene ribbons highly conductive at room temperature

Ballistic graphene ribbons_web.jpg : Conceptual drawing of an electronic circuit comprised of interconnected graphene nanoribbons (black atoms) that are epitaxially grown on steps etched in silicon carbide (yellow atoms). Electrons (blue) travel ballistically along the ribbon and then from one ribbon to the next via the metal contacts. Electron flow is modulated by electrostatic gates © John Hankinson, Georgia Institute of Technology.
Ballistic graphene ribbons_web.jpg : Conceptual drawing of an electronic circuit comprised of interconnected graphene nanoribbons (black atoms) that are epitaxially grown on steps etched in silicon carbide (yellow atoms). Electrons (blue) travel ballistically along the ribbon and then from one ribbon to the next via the metal contacts. Electron flow is modulated by electrostatic gates

© John Hankinson, Georgia Institute of Technology.

Abstract:
An international team including researchers from CNRS, Université de Lorraine, the SOLEIL synchrotron facility[1], Georgia Institute of technology, Oak Ridge National laboratory and Université de Leibniz have achieved a remarkable feat: they have produced graphene ribbons in which electrons move freely. The scientists have devised an entirely novel way of synthesizing such ribbons, and demonstrated their exceptional electrical conductivity at room temperature. The nanoribbons hold out great promise for cutting-edge electronics. The work is published in the 6 February 2014 issue of the journal Nature.

Graphene ribbons highly conductive at room temperature

Paris, France | Posted on February 7th, 2014

Graphene is a material made up of a single layer of atoms that holds tremendous potential. A graphene sheet is around a million times thinner than a hair, more resistant to breakage than steel and yet extremely light. Physically, it takes the form of a honeycomb lattice. When graphene sheets are stacked up, graphite (the grey material in pencil lead) is obtained. In addition, graphene has excellent electrical conductivity: at room temperature, electrons move through it up to 200 times faster than through silicon. Its enormous potential in electronics has triggered much research effort.

A collaboration of physicists from France and the US has been studying the electronic properties of graphene since the early 2000s, with a view to designing a material with very high electron mobility at room temperature. Several years ago, the researchers showed that carbon nanotubes, one of the best-known forms of graphene, can transport electric current ballistically, that is, without encountering resistance within the material. However, carbon nanotubes have proved difficult to manufacture and to insert in large quantities onto electronic chips. As a result, the researchers turned towards another form of graphene: flat ribbons. Similarities in electronic structure between carbon nanotubes and graphene ribbons suggested that they would have analogous conductive properties.

The researchers chose to synthesize this one-dimensional graphene from silicon carbide, a commercially available crystal. Thanks to an ingenious process, they succeeded in obtaining graphene ribbons of very high structural quality, made of an extremely narrow sheet of carbon only 40 nm wide. The main challenge was to ensure that the edges of the ribbon remained highly ordered. This is of paramount importance, since a graphene ribbon with rough edges does not allow good electron propagation. In order to obtain ribbons with regular edges, the trick was to etch nanometer-deep steps into silicon carbide and then produce the graphene ribbons directly on the sidewalls of these steps.

The results exceeded all expectations. The researchers characterized the graphene ribbons produced in this way, which turned out to be ballistic conductors at room temperature: once inside the material, the electrons moved freely without undergoing any scattering. The ribbons thus behaved as waveguides. Charge mobility in these materials exceeded one million cm2/V.s, which would make their electron mobility 1000 times greater than that of the silicon semiconductors (less than 1700 cm2/V.s) used in particular in computer processors and memories. These are the first graphene ribbons to display such conductivity at room temperature.

Another distinctive feature is that the ribbons can be produced easily and in large quantities while keeping the same properties, which makes their large-scale use possible. Because of their exceptional electronic conductivity at room temperature, these new graphene ribbons could find many applications in cutting-edge nanoelectronics.

[1] In France, this work involved the Institut Néel (CNRS) as well as the Institut Jean Lamour (CNRS/Université de Lorraine) and the SOLEIL synchrotron for the characterization of graphene ribbons.

Full bibliographic information

Exceptional ballistic transport in epitaxial graphene nanoribbons. Jens Baringhaus, Ming Ruan, Frederik Edler, Antonio Tejeda, Muriel Sicot, AminaTaleb‐Ibrahimi, An-Pin Li, Zhigang Jiang, Edward Conrad, Claire Berger, Christoph Tegenkamp, Walt A. de Heer. Nature. 6 February 2014.

####

For more information, please click here

Contacts:
Julien Guillaume
+ 33 1 44 96 51 51


CNRS researcher
Claire Berger
T + 1 404 894 7880


CNRS Press Officer
Priscilla Dacher
T +33 1 44 96 46 06

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Continuous roll-process technology for transferring and packaging flexible LSI August 29th, 2016

Meteorite impact on a nano scale August 29th, 2016

Designing ultrasound tools with Lego-like proteins August 29th, 2016

A nanoscale wireless communication system via plasmonic antennas: Greater control affords 'in-plane' transmission of waves at or near visible light August 27th, 2016

Graphene under pressure August 26th, 2016

Graphene/ Graphite

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

Stretchy supercapacitors power wearable electronics August 25th, 2016

'Sniffer plasmons' could detect explosives: Scientists have proposed a graphene-based spaser that can detect even small amounts of various substances, including explosives August 16th, 2016

Nanoribbons in solutions mimic nature: Rice University scientists test graphene ribbons' abilities to integrate with biological systems August 15th, 2016

Laboratories

A new way to display the 3-D structure of molecules: Metal-organic frameworks provide a new platform for solving the structure of hard-to-study samples August 21st, 2016

Scientists uncover origin of high-temperature superconductivity in copper-oxide compound: Analysis of thousands of samples reveals that the compound becomes superconducting at an unusually high temperature because local electron pairs form a 'superfluid' that flows without resist August 19th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Analog DNA circuit does math in a test tube: DNA computers could one day be programmed to diagnose and treat disease August 25th, 2016

New approach to determining how atoms are arranged in materials August 25th, 2016

Johns Hopkins scientists track metabolic pathways to find drug combination for pancreatic cancer August 25th, 2016

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

Discoveries

Continuous roll-process technology for transferring and packaging flexible LSI August 29th, 2016

Meteorite impact on a nano scale August 29th, 2016

Designing ultrasound tools with Lego-like proteins August 29th, 2016

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Announcements

Continuous roll-process technology for transferring and packaging flexible LSI August 29th, 2016

Meteorite impact on a nano scale August 29th, 2016

Designing ultrasound tools with Lego-like proteins August 29th, 2016

A nanoscale wireless communication system via plasmonic antennas: Greater control affords 'in-plane' transmission of waves at or near visible light August 27th, 2016

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Continuous roll-process technology for transferring and packaging flexible LSI August 29th, 2016

Meteorite impact on a nano scale August 29th, 2016

Designing ultrasound tools with Lego-like proteins August 29th, 2016

A nanoscale wireless communication system via plasmonic antennas: Greater control affords 'in-plane' transmission of waves at or near visible light August 27th, 2016

Research partnerships

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

New theory could lead to new generation of energy friendly optoelectronics: Researchers at Queen's University Belfast and ETH Zurich, Switzerland, have created a new theoretical framework which could help physicists and device engineers design better optoelectronics August 23rd, 2016

A new way to display the 3-D structure of molecules: Metal-organic frameworks provide a new platform for solving the structure of hard-to-study samples August 21st, 2016

Researchers watch catalysts at work August 19th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic