Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Electrochemical Nanosensors Able to Detect Cancerous Colorful Compounds in Foodstuff

Abstract:
Highly sensitive and cheap electrochemical nanosensors were designed by Iranian researchers to analyze Sudan I, which is a cancerous colorful material in food samples.

Electrochemical Nanosensors Able to Detect Cancerous Colorful Compounds in Foodstuff

Tehran, Iran | Posted on February 3rd, 2014

The researchers used synthetic nanocomposites of platinum/carbon nanotube in designing the nanosensors.In this research, they designed a sensitive electrochemical sensor modified with platinum/ arbon nanotube nanocomposite to analyze the toxic compound of Sudan I in food samples. Since Sudan I is a forbidden additive of foodstuff and it causes cancer, its analysis and quick detection is very essential.

However, the weak signal of this compound makes it very difficult to detect tiny amounts of it. Therefore, the use of platinum/carbon nanotube nanocomposite synthesized through polyol method enabled the researchers to strengthen the weak signal of the sample, and they made possible the detection of this material in food samples such as tomato ketchup and so on.

The use of a nanocomposite and its mixing with ionic liquid to analyze tiny amounts of Sudan I are among the important characteristics of the research. This is the first application for the combination of this platinum-based nanocomposite with ionic liquids in the analysis of tiny amounts of Sudan I.

The presence of nanocomposite with platinum and carbon nanotube base increases the electrical conduction of the electrode surface due to high ratio of area to volume and high conductivity of the compounds. Therefore, it can strengthen weak signals of Sudan I. Since tiny amounts of Sudan I cause cancer too, the researchers needed a sensor with strong signal. The presence of nanocomposite in this research has resolved this problem.

Results of the research have been published in Food Chemistry, vol. 141, issue 4, 15 April 2013, pp. 4311-4317.

####

For more information, please click here

Copyright © Fars News Agency

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Quantum obstacle course changes material from superconductor to insulator December 1st, 2016

Throwing new light on printed organic solar cells December 1st, 2016

Sensors

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Tip-assisted chemistry enables chemical reactions at femtoliter scale November 16th, 2016

'Back to the Future' inspires solar nanotech-powered clothing November 15th, 2016

Engineers develop new magnetic ink to print self-healing devices that heal in record time November 7th, 2016

Discoveries

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Quantum obstacle course changes material from superconductor to insulator December 1st, 2016

Throwing new light on printed organic solar cells December 1st, 2016

Announcements

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Quantum obstacle course changes material from superconductor to insulator December 1st, 2016

Throwing new light on printed organic solar cells December 1st, 2016

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Quantum obstacle course changes material from superconductor to insulator December 1st, 2016

Throwing new light on printed organic solar cells December 1st, 2016

New method for analyzing crystal structure: Exotic materials called photonic crystals reveal their internal characteristics with new method November 30th, 2016

Food/Agriculture/Supplements

News from Quorum: The Agricultural Research Service of the USDA uses a Quorum Cryo-SEM preparation system for the study of mites, ticks and other soft bodied organisms November 22nd, 2016

Water, water -- the two types of liquid water: Understanding water's behavior could help with Alzheimer's research November 11th, 2016

How nanoscience will improve our health and lives in the coming years: Targeted medicine deliveries and increased energy efficiency are just two of many ways October 26th, 2016

New Agricultural Research Center Debuts at UCF October 12th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project