Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Research could bring new devices that control heat flow

Researchers are proposing a new technology that controls the flow of heat the way electronic devices control electrical current. Triangular graphene nanoribbons (a) are proposed as a new thermal rectifier, in which the heat flow in one direction is larger than that in the opposite direction. Thermal rectification (b) is not limited to graphene, but can also be seen in other "asymmetric nanostructure materials" including thin films, pyramidal quantum dots, nanocones and triangles.Purdue University image
Researchers are proposing a new technology that controls the flow of heat the way electronic devices control electrical current. Triangular graphene nanoribbons (a) are proposed as a new thermal rectifier, in which the heat flow in one direction is larger than that in the opposite direction. Thermal rectification (b) is not limited to graphene, but can also be seen in other "asymmetric nanostructure materials" including thin films, pyramidal quantum dots, nanocones and triangles.

Purdue University image

Abstract:
Phonon Lateral Confinement Enables Thermal Rectification in Asymmetric Single-Material Nanostructures

Yan Wang,†,‡ Ajit Vallabhaneni,†,‡ Jiuning Hu,‡,ง Bo Qiu,†,‡ Yong P. Chen,‡,ง,∥ and Xiulin Ruan*,†,‡

† School of Mechanical Engineering, Purdue University

‡ Birck Nanotechnology Center, Purdue University

ง School of Electrical and Computer Engineering, Purdue University

∥Department of Physics, Purdue University

We show that thermal rectification (TR) in asymmetric graphene nanoribbons (GNRs) is originated from phonon confinement in the lateral dimension, which is a fundamentally new mechanism different from that in macroscopic heterojunctions. Our molecular dynamics simulations reveal that, though TR is significant in nanosized asymmetric GNRs, it diminishes at larger width. By solving the heat diffusion equation, we prove that TR is indeed absent in both the total heat transfer rate and local heat flux for bulk-size asymmetric single materials, regardless of the device geometry or the anisotropy of the thermal conductivity. For a deeper understanding of why lateral confinement is needed, we have performed phonon spectra analysis and shown that phonon lateral confinement can enable three possible mechanisms for TR: phonon spectra overlap, inseparable dependence of thermal conductivity on temperature and space, and phonon edge localization, which are essentially related to each other in a complicated manner. Under such guidance, we demonstrate that other asymmetric nanostructures, such as asymmetric nanowires, thin films, and quantum dots, of a single material are potentially high-performance thermal rectifiers.

Research could bring new devices that control heat flow

West Lafayette, IN | Posted on January 27th, 2014

Researchers are proposing a new technology that might control the flow of heat the way electronic devices control electrical current, an advance that could have applications in a diverse range of fields from electronics to textiles.

The concept uses tiny triangular structures to control "phonons," quantum-mechanical phenomena that describe how vibrations travel through a material's crystal structure.

Findings in research using advanced simulations show the triangular or T-shaped structures - if small enough in width - are capable of "thermal rectification," or permitting a greater flow of heat in one direction than in the opposite direction, said Xiulin Ruan, an associate professor in Purdue University's School of Mechanical Engineering and Birck Nanotechnology Center.

Rectification has made possible transistors, diodes and memory circuits central to the semiconductor industry. The new devices are thermal rectifiers that might perform the same function, but with phonons instead of electrical current.

"In most systems, heat flow is equal in both directions, so there are no thermal devices like electrical diodes. However, if we are able to control heat flow like we control electricity using diodes then we can enable a lot of new and exciting thermal devices including thermal switches, thermal transistors, logic gates and memory," said Ruan, whose research group collaborated with a group led by Yong Chen, an associate professor in Purdue's Department of Physics and School of Electrical and Computer Engineering. "People are just starting to understand how it works, and it is quite far from being used in applications."

Findings are detailed in a research paper that has appeared online in the journal Nano Letters and will be published in an upcoming issue of the journal. The paper was authored by doctoral students Yan Wang, Ajit Vallabhaneni and Jiuning Hu and former doctoral student Bo Qiu; Chen; and Ruan.

The researchers used an advanced simulation method called molecular dynamics to demonstrate thermal rectification in structures called "asymmetric graphene nanoribbons." Molecular dynamics simulations can simulate the vibrations of atoms and predict the heat flow in a material.

Graphene, an extremely thin layer of carbon, is promising for applications in electronics and computers. The triangular structure must be tiny in width to make possible the "lateral confinement" of phonons needed for the effect. Findings also show thermal rectification is not limited to graphene but could be seen in other materials in structures such as pyramidal, trapezoidal or T-shaped designs.

Hu, Ruan, and Chen also published a paper four years ago in the journal Nano Letters, among the first to propose asymmetric graphene nanoribbons as a thermal rectifier in research using the molecular dynamics simulations. Although numerous studies have been devoted to this topic since then, until now researchers did not know the mechanism behind thermal rectification. The new findings show that this mechanism works by restricting vibrations as they travel through the small lateral direction of an asymmetrical structure.

"We demonstrate that other asymmetric materials, such as asymmetric nanowires, thin films, and quantum dots of a single material can also be high-performance thermal rectifiers, as long as you have lateral confinement," Ruan said. "This really broadens the potential of this rectification to a much wider spectrum of applications."

Thermal rectification is not seen in larger triangular-shape structures because they lack lateral confinement. In order for lateral confinement to be produced, the cross section of the structure must be much smaller than the "mean free path" of a phonon, or only a few to hundreds of nanometers depending on the material, Wang said.

"This is the average distance a phonon can travel before it collides with another phonon," he said.

However, although the devices must be tiny, they could be linked in series to produce larger structures and better rectification performance.

The concept could find uses in "thermal management" applications for computers and electronics, buildings and even clothing.

"For example, on a winter night you don't want a building to lose heat quickly to the outside, while during the day you want the building to be warmed up by the sun, so it would be good to have building materials that permit the flow of heat in one direction, but not the other," Ruan said.

A potential, although speculative, future application could be thermal transistors. Unlike conventional transistors, thermal transistors would not require the use of silicon, are based on phonons rather than electrons and might make use of the large amount of waste heat that is already generated in most practical electronics, said Chen.

The research was funded by the U.S. Air Force Office of Scientific Research.

####

For more information, please click here

Contacts:
Writer:
Emil Venere
765-494-4709


Sources:
Xiulin Ruan
765-494-5721


Yong P. Chen
765-494-0947

Copyright © Purdue University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

National Science Foundation Selects SUNY Poly CNSE for Expanded $2.1M Northeast Advanced Technological Education Center: NSF Center Locates to NanoCollege in Support of Flourishing Tech Industry in NYS September 1st, 2015

RUSNANOPRIZE Directorate Announces New Deadline for Nominations Submission – September 11, 2015 September 1st, 2015

$200K Awarded to Develop In Vitro Lung Test for Toxicity of Inhaled Nanomaterials: In Vitro Lung Test Designed to Protect Human Health and Replace Animal Testing September 1st, 2015

Hot electrons point the way to perfect light absorption: Physicists study how to achieve perfect absorption of light with the help of rough ultrathin films September 1st, 2015

Using DNA origami to build nanodevices of the future September 1st, 2015

Thin films

Hot electrons point the way to perfect light absorption: Physicists study how to achieve perfect absorption of light with the help of rough ultrathin films September 1st, 2015

Using ultrathin sheets to discover new class of wrapped shapes: UMass Amherst materials researchers describe a new regime of wrapped shapes August 31st, 2015

Discoveries

Hot electrons point the way to perfect light absorption: Physicists study how to achieve perfect absorption of light with the help of rough ultrathin films September 1st, 2015

Using DNA origami to build nanodevices of the future September 1st, 2015

Scientists 'squeeze' light one particle at a time: A team of scientists have measured a bizarre effect in quantum physics, in which individual particles of light are said to have been 'squeezed' -- an achievement which at least one textbook had written off as hopeless September 1st, 2015

Using ultrathin sheets to discover new class of wrapped shapes: UMass Amherst materials researchers describe a new regime of wrapped shapes August 31st, 2015

Announcements

$200K Awarded to Develop In Vitro Lung Test for Toxicity of Inhaled Nanomaterials: In Vitro Lung Test Designed to Protect Human Health and Replace Animal Testing September 1st, 2015

Hot electrons point the way to perfect light absorption: Physicists study how to achieve perfect absorption of light with the help of rough ultrathin films September 1st, 2015

Using DNA origami to build nanodevices of the future September 1st, 2015

Nanotech could rid cattle of ticks, with less collateral damage September 1st, 2015

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Hot electrons point the way to perfect light absorption: Physicists study how to achieve perfect absorption of light with the help of rough ultrathin films September 1st, 2015

Using DNA origami to build nanodevices of the future September 1st, 2015

Nanotech could rid cattle of ticks, with less collateral damage September 1st, 2015

Scientists 'squeeze' light one particle at a time: A team of scientists have measured a bizarre effect in quantum physics, in which individual particles of light are said to have been 'squeezed' -- an achievement which at least one textbook had written off as hopeless September 1st, 2015

Military

Seeing quantum motion August 30th, 2015

These microscopic fish are 3-D-printed to do more than swim: Researchers demonstrate a novel method to build microscopic robots with complex shapes and functionalities August 26th, 2015

Nanotechnology that will impact the Security & Defense sectors to be discussed at NanoSD2015 conference August 25th, 2015

Industrial Nanotech, Inc. Provides Update On Hospital Project, PCAOB Audit, and New Heat Shield™ Line August 24th, 2015

Quantum Dots/Rods

'Quantum dot' technology may help light the future August 19th, 2015

New research may enhance display & LED lighting technology: Large-area integration of quantum dots and photonic crystals produce brighter and more efficient light August 9th, 2015

Quantum networks: Back and forth are not equal distances! July 28th, 2015

Superfast fluorescence sets new speed record: Plasmonic device has speed and efficiency to serve optical computers July 27th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic