Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Nanotech Innovation Keeps Surfaces Clean and Transparent

Abstract:
Hanging hundreds of feet off the ground to wash a skyscraper's windows or pumping water out to a desert solar array to keep its panels and mirrors clean is more than just a hassle—it's an expensive problem with serious ecological implications.

Nanotech Innovation Keeps Surfaces Clean and Transparent

Philadelphia, PA | Posted on December 21st, 2013

A spin-off company from Penn has found a way to solve the problem of keeping surfaces clean, while also keeping them transparent.

Nelum Sciences, created under an UPstart program in Penn's Center for Technology Transfer, has developed a superhydrophobic coating that can be sprayed onto any surface. The water-based solution contains nanoscopic particles that add a nearly invisible layer of roughness to a surface. This increases the contact angle of the material to which these particles are applied.

A contact angle is the angle the edges of a resting drop of liquid make with a surface. When the angle is low, a drop resembles a flattened hemisphere, with edges that are stuck to the surface. But as the angle increases, a drop begins to look more like a ball, until it literally rolls away instead of sticking.

When these balls of liquid roll off a superhydrophobic surface, they pick up any debris they encounter in their paths, keeping a surface clean.

Co-founded in 2011 by Shu Yang, professor of materials science and engineering in Penn's School of Engineering and Applied Science, Nelum Science's coating is based on her nanotechnology research. Fabricating the coating's nanoparticles at sizes smaller than the wavelength of light—the quality that makes them transparent—is the product of cutting-edge laboratory techniques. The company's inspiration, however, came from structures created by nature.

"Some plants, like lotuses, and other biological structures, like butterfly wings, have this kind of nano-roughness to keep them clean and dry," Yang says. "That's why we named the company after the lotus' Latin name, nelumbo."

Other superhydrophobic sprays have recently come on the market, but they give surfaces a hazy, frosted appearance, making them inappropriate for applications where cleanliness is critical, such as windows, lenses, safety goggles, and solar panels.

Text by Evan Lerner
Video by Kurtis Sensenig

####

For more information, please click here

Copyright © University of Pennsylvania

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New method allows for greater variation in band gap tunability: The method can change a material's electronic band gap by up to 200 percent January 31st, 2015

Evidence mounts for quantum criticality theory: Findings bolster theory that quantum fluctuations drive strange electronic phenomena January 30th, 2015

Everything You Need To Know About Nanopesticides January 30th, 2015

DNA nanoswitches reveal how life's molecules connect: An accessible new way to study molecular interactions could lower cost and time associated with discovering new drugs January 30th, 2015

Discoveries

New method allows for greater variation in band gap tunability: The method can change a material's electronic band gap by up to 200 percent January 31st, 2015

Evidence mounts for quantum criticality theory: Findings bolster theory that quantum fluctuations drive strange electronic phenomena January 30th, 2015

Everything You Need To Know About Nanopesticides January 30th, 2015

DNA nanoswitches reveal how life's molecules connect: An accessible new way to study molecular interactions could lower cost and time associated with discovering new drugs January 30th, 2015

Materials/Metamaterials

Evidence mounts for quantum criticality theory: Findings bolster theory that quantum fluctuations drive strange electronic phenomena January 30th, 2015

Crystal light: New light-converting materials point to cheaper, more efficient solar power: University of Toronto engineers study first single crystal perovskites for new solar cell and LED applications January 30th, 2015

The Original Frameless Shower Doors Installs DFI's FuseCube™ to Offer Hydrophobic Protective Coating as a Standard Feature: First DFI FuseCube™ Installed on the East Coast to Enable Key Differentiator for the Original Frameless Shower Doors January 29th, 2015

Creating new materials with quantum effects for electronics January 29th, 2015

Announcements

New method allows for greater variation in band gap tunability: The method can change a material's electronic band gap by up to 200 percent January 31st, 2015

Evidence mounts for quantum criticality theory: Findings bolster theory that quantum fluctuations drive strange electronic phenomena January 30th, 2015

Everything You Need To Know About Nanopesticides January 30th, 2015

DNA nanoswitches reveal how life's molecules connect: An accessible new way to study molecular interactions could lower cost and time associated with discovering new drugs January 30th, 2015

Patents/IP/Tech Transfer/Licensing

Industrial Nanotech, Inc. Announces New OEM Customer January 27th, 2015

Carbon nanotube finding could lead to flexible electronics with longer battery life January 14th, 2015

Liquipel Receives US Patent on Environmentally Friendly, Watersafe Treatment of Electronics: U.S. Patent Office Finds Watersafe™ Treatment Covers Cell Phones, Smart Phones, Tablets, Computers and More January 5th, 2015

New non-invasive method can detect Alzheimer's disease early: MRI probe technology shows brain toxins in living animals for first time December 22nd, 2014

Energy

New method allows for greater variation in band gap tunability: The method can change a material's electronic band gap by up to 200 percent January 31st, 2015

Crystal light: New light-converting materials point to cheaper, more efficient solar power: University of Toronto engineers study first single crystal perovskites for new solar cell and LED applications January 30th, 2015

Los Alamos Develops New Technique for Growing High-Efficiency Perovskite Solar Cells: Researchers’ crystal-production insights resolve manufacturing difficulty January 29th, 2015

Carbon nanoballs can greatly contribute to sustainable energy supply January 27th, 2015

Home

The Original Frameless Shower Doors Installs DFI's FuseCube™ to Offer Hydrophobic Protective Coating as a Standard Feature: First DFI FuseCube™ Installed on the East Coast to Enable Key Differentiator for the Original Frameless Shower Doors January 29th, 2015

Materials - Next-generation insulation ... January 13th, 2015

Biosenta Inc. Updates New Household Disinfectant Testing Results; It Kills 100% of a Broad Range of Deadly Molds, Fungi, Bacteria, and Viruses, Including Ebola and Enterovirus D68 November 20th, 2014

Iranian Nano Scientists Create Flame-Resistant Polymers September 13th, 2014

Industrial

Industrial Nanotech, Inc. Announces New OEM Customer January 27th, 2015

Detection of Heavy Metals in Samples with Naked Eye January 26th, 2015

Iranian Scientists Produce Graphene-Based Oxygen Sensor January 23rd, 2015

Teijin to Participate in Nano Tech 2015 January 22nd, 2015

Solar/Photovoltaic

New method allows for greater variation in band gap tunability: The method can change a material's electronic band gap by up to 200 percent January 31st, 2015

Crystal light: New light-converting materials point to cheaper, more efficient solar power: University of Toronto engineers study first single crystal perovskites for new solar cell and LED applications January 30th, 2015

Los Alamos Develops New Technique for Growing High-Efficiency Perovskite Solar Cells: Researchers’ crystal-production insights resolve manufacturing difficulty January 29th, 2015

Visualizing interacting electrons in a molecule: Scientists at Aalto University and the University of Zurich have succeeded in directly imaging how electrons interact within a single molecule January 26th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE