Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Opposing Phenomena Possible Key to High-Efficiency Electricity Delivery

The researchers combined atomic-scale microscopy (front image) and a new sensitive x-ray scattering technique (rear image) to visualize the structure of the charge-order state in copper oxide and its relationship with superconductivity. The image shows that the two techniques reveal unique yet complementary images of the same charge-order state, thereby demonstrating its existence in copper oxide. The junction where the charge-order and superconducting states coexist could help scientists further develop and control superconductivityImage courtesy of Ali Yazdani, Princeton University Department of Physics
The researchers combined atomic-scale microscopy (front image) and a new sensitive x-ray scattering technique (rear image) to visualize the structure of the charge-order state in copper oxide and its relationship with superconductivity. The image shows that the two techniques reveal unique yet complementary images of the same charge-order state, thereby demonstrating its existence in copper oxide. The junction where the charge-order and superconducting states coexist could help scientists further develop and control superconductivity

Image courtesy of Ali Yazdani, Princeton University Department of Physics

Abstract:
By Morgan Kelly, Princeton University Office of Communications

The coexistence of two opposing phenomena might be the secret to understanding the enduring mystery in physics of how materials heralded as the future of powering our homes and communities actually work, according to Princeton University-led research. Such insight could help spur the further development of high-efficiency electric-power delivery.

Opposing Phenomena Possible Key to High-Efficiency Electricity Delivery

Upton, NY | Posted on December 19th, 2013

Published in the journal Science, the findings provide a substantial clue for unraveling the inner workings of high-temperature superconductors (HTS) based on compounds containing copper and oxygen, or copper oxides. Copper-oxide high-temperature superconductors are prized as a material for making power lines because of their ability to conduct electricity with no resistance. It's been shown that the material can be used to deliver electrical power like ordinary transmission lines, but with no loss of energy. In addition, typical superconductors need extremely low temperatures of roughly -243 degrees Celsius (-405 degrees Fahrenheit) to exhibit this 100-percent efficiency. A copper oxide HTS, however, can reach this level of efficiency at a comparatively toasty -135 degrees Celsius (-211 degrees Fahrenheit), which is achievable using liquid nitrogen.

Copper oxides are the linchpin of the world's first superconducting electrical line, the 600-meter (1,970-foot) cable installed on Long Island in 2008 as the Holbrook Superconductor Project funded by the U.S. Department of Energy. The cable is chilled with about 49,000 liters (13,000 gallons) of liquid nitrogen. Another 3 million meters (1,860 miles) of superconducting cables are bound for a power grid in South Korea.

Despite the promise and burgeoning commercial embrace of HTS materials, scientists still do not fully understand many of the properties of these compounds, including how superconductivity occurs at such high temperatures, said Ali Yazdani, a Princeton physics professor and the Science paper's senior author. That knowledge gap has hindered the development of additional HTC materials as well as efforts to increase further the temperature at which superconductivity can occur, Yazdani said.

The secret to high-temperature superconductivity may lie at the junction of that state and its near opposite, Yazdani and his colleagues found. The researchers report that high-temperature superconductivity in copper oxides forms as the material is cooled from a state in which electrons exhibit what is normally considered a competing behavior called "charge ordering." In a superconductor, electrons overcome their repulsion and form pairs that move in unison and conduct electricity without resistance. In a charge-ordered state, interaction between electrons keeps them locked into a rigid pattern, which usually limits their ability to make the freely moving pairs required for superconductivity.

"Charge ordering is when every electron knows its place and stays there - in a superconductor, they know their place but they move in unison," Yazdani said. "It's almost like they freeze into this patterned charge-order state, and just before they become stuck they change their minds and do exactly the opposite."

The researchers' finding provides an important indication about the point at which a material potentially becomes an HTS, Yazdani said. From there, scientists may one day figure out how to enhance superconductivity, possibly even determining how it can occur at higher temperatures, he said.

There has been a previous indication of the interplay between the charge-order and superconducting states. Yazdani and his co-authors, however, combined atomic-scale microscopy and a new sensitive x-ray scattering technique to demonstrate that this phenomenon is ubiquitous across different families of copper-oxide superconductors. Their approach also presented a new method for visualizing the structure of a charge-order state and for more precisely identifying the state's relationship with superconductivity.

"Understanding and improving the properties of these materials is one of the grand challenges of our field," Yazdani said. "To make a charge-order state you use the same ingredients as a superconductor but at some point the electrons bifurcate into a state you want and the one you don't. In order to understand the one you want, you need to understand where they both came from."

Yazdani worked with co-first authors Eduardo da Silva Neto, who received his doctorate from Princeton and is now a postdoctoral researcher at the University of British Columbia, and Princeton postdoctoral researcher Pegor Aynajian, who recently became a physics professor at Binghamton University. Also involved were Princeton graduate student András Gyenis and researchers from Brookhaven National Laboratory, the Max Planck Institute for Solid State Research in Stuttgart, Germany, the Helmholtz-Zentrum Institute for Materials and Energy in Berlin, the University of British Columbia, and the Central Research Institute of Electric Power Industry in Tokyo.

The paper, "Ubiquitous interplay between charge ordering and high-temperature superconductivity in cuprates," was published Dec. 19 in the journal Science. The work was supported by the U.S. Department of Energy Basic Energy Sciences, the National Science Foundation (grant DMR1104612), the Eric and Wendy Schmidt Transformative Technology Fund, and the W.M. Keck Foundation.

####

About Brookhaven National Laboratory
One of ten national laboratories overseen and primarily funded by the Office of Science of the U.S. Department of Energy (DOE), Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. Brookhaven is operated and managed for DOE's Office of Science by Brookhaven Science Associates, a limited-liability company founded by the Research Foundation for the State University of New York on behalf of Stony Brook University, the largest academic user of Laboratory facilities, and Battelle, a nonprofit applied science and technology organization.

For more information, please click here

Contacts:
Brookhaven Lab media contact: Karen McNulty Walsh
631-344-8350


Princeton University media contact:
Morgan Kelly
609-258-5729

Copyright © Brookhaven National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Small but heading for the big time: Nanobiotix half year results for the six months ended 30 June 2015, in line with expectations: Major clinical achievements and corporate developments August 28th, 2015

A new technique to make drugs more soluble August 28th, 2015

Nanocatalysts improve processes for the petrochemical industry August 28th, 2015

Nanolab Technologies LEAPS Forward with High-Performance Analysis Services to the World: Nanolab Orders Advanced Local Electrode Atom Probe (LEAP®) Microscope from CAMECA Unit of AMETEK Materials Analysis Division August 27th, 2015

Laboratories

Major innovation in molecular imaging delivers spatial and spectral info simultaneously: Berkeley Lab scientist invents technique to combine spectroscopy with super-resolution microscopy, enabling new ways to examine cell structures and study diseases August 17th, 2015

Drexel engineers 'sandwich' atomic layers to make new materials for energy storage August 15th, 2015

Surprising discoveries about 2-D molybdenum disulfide: Berkeley Lab researchers use award-winning campanile probe on promising semiconductor August 15th, 2015

New ORNL hybrid microscope offers unparalleled capabilities August 10th, 2015

Superconductivity

Two spin liquids square off in an iron-based superconductor: Changes in short-range, transient order in competing liquid-like phases precede onset of superconductivity August 5th, 2015

Detecting small metallic contaminants in food via magnetization: A practical metallic-contaminant detecting system using three high-Tc RF superconducting quantum interference devices (SQUIDs) July 29th, 2015

Superconductor could be realized in a broken Lorenz invariant theory July 7th, 2015

Making new materials with micro-explosions: ANU media release: Scientists have made exotic new materials by creating laser-induced micro-explosions in silicon, the common computer chip material June 29th, 2015

Govt.-Legislation/Regulation/Funding/Policy

These microscopic fish are 3-D-printed to do more than swim: Researchers demonstrate a novel method to build microscopic robots with complex shapes and functionalities August 26th, 2015

Glitter from silver lights up Alzheimer's dark secrets August 25th, 2015

Southampton scientists find new way to detect ortho-para conversion in water August 25th, 2015

Industrial Nanotech, Inc. Provides Update On Hospital Project, PCAOB Audit, and New Heat Shield™ Line August 24th, 2015

Discoveries

A new technique to make drugs more soluble August 28th, 2015

Nanocatalysts improve processes for the petrochemical industry August 28th, 2015

CWRU researchers efficiently charge a lithium-ion battery with solar cell: Coupling with perovskite solar cell holds potential for cleaner cars and more August 27th, 2015

Successful boron-doping of graphene nanoribbon August 27th, 2015

Announcements

Small but heading for the big time: Nanobiotix half year results for the six months ended 30 June 2015, in line with expectations: Major clinical achievements and corporate developments August 28th, 2015

A new technique to make drugs more soluble August 28th, 2015

Nanocatalysts improve processes for the petrochemical industry August 28th, 2015

Nanolab Technologies LEAPS Forward with High-Performance Analysis Services to the World: Nanolab Orders Advanced Local Electrode Atom Probe (LEAP®) Microscope from CAMECA Unit of AMETEK Materials Analysis Division August 27th, 2015

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

A new technique to make drugs more soluble August 28th, 2015

CWRU researchers efficiently charge a lithium-ion battery with solar cell: Coupling with perovskite solar cell holds potential for cleaner cars and more August 27th, 2015

Successful boron-doping of graphene nanoribbon August 27th, 2015

Researchers combine disciplines, computational programs to determine atomic structure August 26th, 2015

Energy

Nanocatalysts improve processes for the petrochemical industry August 28th, 2015

Nanotechnology that will impact the Security & Defense sectors to be discussed at NanoSD2015 conference August 25th, 2015

Industrial Nanotech, Inc. Provides Update On Hospital Project, PCAOB Audit, and New Heat Shield™ Line August 24th, 2015

Novel nanostructures for efficient long-range energy transport August 21st, 2015

Research partnerships

Nanocatalysts improve processes for the petrochemical industry August 28th, 2015

Announcing Oxford Instruments and School of Physics signing a Memorandum of Understanding August 26th, 2015

Researchers combine disciplines, computational programs to determine atomic structure August 26th, 2015

Developing Component Scale Composites Using Nanocarbons August 26th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic