Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > UCLA researcher highlights advances in nanotechnology's fight against cancer

Abstract:
As cancer maintains its standing as the second leading cause of death in the U.S., researchers have continued their quest for safer and more effective treatments. Among the most promising advances has been the rise of nanomedicine, the application of tiny materials and devices whose sizes are measured in the billionths of a meter to detect, diagnose and treat disease.

UCLA researcher highlights advances in nanotechnology's fight against cancer

Los Angeles, CA | Posted on December 19th, 2013

A new research review co-authored by a UCLA professor provides one of the most comprehensive assessments to date of research on nanomedicine-based approaches to treating cancer and offers insight into how researchers can best position nanomedicine-based cancer treatments for FDA approval.

The article, by Dean Ho, professor of oral biology and medicine at the UCLA School of Dentistry, and Edward Chow, assistant professor at the Cancer Science Institute of Singapore and the National University of Singapore, was published online by the peer-reviewed journal Science Translational Medicine. Ho and Chow describe the paths that nanotechnology-enabled therapies could take and the regulatory and funding obstacles they could encounter as they progress through safety and efficacy studies.

"Manufacturing, safety and toxicity studies that will be accepted by the Food and Drug Administration before clinical studies are just some of the considerations that continue to be addressed by the nanomedicine field," said Chow, the paper's co-corresponding author.

Compared with other available therapies, nanomedicine has proven to be especially promising in fighting cancer. In preclinical trials, nanomaterials have produced safer and more effective imaging and drug delivery, and they have enabled researchers to precisely target tumors while sparing patients' healthy tissue. In addition, nanotechnology has significantly improved the sensitivity of magnetic resonance imaging, making hard-to-find cancers easier to detect.

"A broad spectrum of innovative vehicles is being developed by the cancer nanomedicine community for targeted drug delivery and imaging systems," said Dr. Ho, the paper's corresponding author and co-director of the Jane and Jerry Weintraub Center for Reconstructive Biotechnology at the UCLA School of Dentistry. "It is important to address regulatory issues, overcome manufacturing challenges and outline a strategy for implementing nanomedicine therapies both individually and in combination to help achieve widespread acceptance for the clinical use of cancer nanomedicine."

Ho's team previously pioneered the development of a nanodiamond-doxorubicin compound named NDX. In preclinical studies conducted with Chow, NDX was found to be safer and more effective than unmodified doxorubicin, a clinical standard, for treating breast, liver and other cancer models.

Ho and Chow's new report features multiple studies in which the use of nanoparticles was translated from the preclinical to the clinical stage. In several of the highlighted studies, nanotechnology-modified drugs showed improvements over conventional, drug-only approaches because of their ability to overcome drug resistance (which occurs when tumors reject the drug and stop responding to treatment), to more effective tumor reduction, among other advantages.

The authors also describe how algorithm-based methods that rapidly determine the best drug combinations, and computation-based methods that draw information from databases of drug interactions and side effects, to help rationally design drug combinations could potentially be paired with nanomedicine to deliver multiple nano-therapies together to further improve the potency and safety of cancer treatments.

"This research review by Dr. Ho and his colleagues lays the groundwork for nanomedicine to become a widely accepted cancer therapy," said Dr. No-Hee Park, dean of the UCLA School of Dentistry. "This blueprint for navigating the process from bench research to mainstream clinical use is invaluable to the nanotechnology community."

Dr. Ho, also a professor of bioengineering and a member of the Jonsson Comprehensive Cancer Center and California NanoSystems Institute, noted that nanomedicine regulation is still in its early stages, but the clinical use of existing nanoparticle drugs, such as the protein-modified breast cancer drug Abraxane, is a promising start.

"The FDA's approval of Abraxane provides a strong foundation for the continued acceleration of new cancer nanomedicine therapies and imaging solutions in the fight against cancer," Ho said.

###

Research conducted by the teams of Ho and Chow has been funded by the National Cancer Institute, the National Science Foundation, the Wallace H. Coulter Foundation, the V Foundation for Cancer Research, a Society for Laboratory Automation and Screening endowed fellowship, Beckman Coulter Life Sciences, the National Medical Research Council of Singapore and a Singapore Ministry of Education Academic Research Fund Tier 1 grant.

####

About University of California - Los Angeles
The UCLA School of Dentistry is dedicated to improving the oral and systemic health of the people of California, the nation and the world through its teaching, research, patient care and public service initiatives. The School of Dentistry provides education and training programs that develop leaders in dental education, research, the profession and the community. The School of Dentistry also conducts research programs that generate new knowledge, promote oral health and investigate the cause, prevention, diagnosis and treatment of oral disease in an individualized disease-prevention and management model; and delivers patient-centered oral health care to the community and the state.

For more information, please click here

Contacts:
Brianna Deane

310-206-0835

Copyright © University of California - Los Angeles

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Thanks for the memory: NIST takes a deep look at memristors January 20th, 2018

New Method Uses DNA, Nanoparticles and Top-Down Lithography to Make Optically Active Structures: Technique could lead to new classes of materials that can bend light, such as for those used in cloaking devices January 18th, 2018

Arrowhead Pharmaceuticals Announces Pricing of Underwritten Public Offering of Common Stock January 18th, 2018

Leti to Demo New Curving Technology at Photonics West that Improves Performance of Optical Components January 18th, 2018

Govt.-Legislation/Regulation/Funding/Policy

Thanks for the memory: NIST takes a deep look at memristors January 20th, 2018

New Method Uses DNA, Nanoparticles and Top-Down Lithography to Make Optically Active Structures: Technique could lead to new classes of materials that can bend light, such as for those used in cloaking devices January 18th, 2018

Ultra-thin memory storage device paves way for more powerful computing January 17th, 2018

'Gyroscope' molecules form crystal that's both solid and full of motion: New type of molecular machine designed by UCLA researchers could have wide-ranging applications in technology and science January 16th, 2018

Nanomedicine

Arrowhead Pharmaceuticals Announces Pricing of Underwritten Public Offering of Common Stock January 18th, 2018

Leti to Demo New Curving Technology at Photonics West that Improves Performance of Optical Components January 18th, 2018

Ultra-thin optical fibers offer new way to 3-D print microstructures: Novel approach lays groundwork for using 3-D printing to repair tissue in the body January 17th, 2018

Arrowhead Pharmaceuticals Announces Proposed Underwritten Offering of Common Stock January 17th, 2018

Discoveries

Thanks for the memory: NIST takes a deep look at memristors January 20th, 2018

New Method Uses DNA, Nanoparticles and Top-Down Lithography to Make Optically Active Structures: Technique could lead to new classes of materials that can bend light, such as for those used in cloaking devices January 18th, 2018

Nanowrinkles could save billions in shipping and aquaculture Surfaces inspired by carnivorous plants delay degradation by marine fouling January 17th, 2018

Ultrathin black phosphorus for solar-driven hydrogen economy: Osaka University researchers use sunlight to make hydrogen with a new nanostructured catalyst based on nanosheets of black phosphorus and bismuth vanadate January 17th, 2018

Announcements

Thanks for the memory: NIST takes a deep look at memristors January 20th, 2018

New Method Uses DNA, Nanoparticles and Top-Down Lithography to Make Optically Active Structures: Technique could lead to new classes of materials that can bend light, such as for those used in cloaking devices January 18th, 2018

Arrowhead Pharmaceuticals Announces Pricing of Underwritten Public Offering of Common Stock January 18th, 2018

Leti to Demo New Curving Technology at Photonics West that Improves Performance of Optical Components January 18th, 2018

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Thanks for the memory: NIST takes a deep look at memristors January 20th, 2018

Nanowrinkles could save billions in shipping and aquaculture Surfaces inspired by carnivorous plants delay degradation by marine fouling January 17th, 2018

Ultrathin black phosphorus for solar-driven hydrogen economy: Osaka University researchers use sunlight to make hydrogen with a new nanostructured catalyst based on nanosheets of black phosphorus and bismuth vanadate January 17th, 2018

Ultra-thin optical fibers offer new way to 3-D print microstructures: Novel approach lays groundwork for using 3-D printing to repair tissue in the body January 17th, 2018

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

New catalyst for hydrogen production is a step toward clean fuel: Carbon-based nanocomposite with embedded metal ions yields impressive performance as catalyst for electrolysis of water to generate hydrogen January 16th, 2018

The nanoscopic structure that locks up our genes January 16th, 2018

Nanotube fibers in a jiffy: Rice University lab makes short nanotube samples by hand to dramatically cut production time January 11th, 2018

Teachers in Space, Inc. wins Dream Project contest January 9th, 2018

Research partnerships

Ultra-thin memory storage device paves way for more powerful computing January 17th, 2018

New catalyst for hydrogen production is a step toward clean fuel: Carbon-based nanocomposite with embedded metal ions yields impressive performance as catalyst for electrolysis of water to generate hydrogen January 16th, 2018

New era in high field superconducting magnets opening new frontiers in science, nanotechnology and materials discovery January 9th, 2018

Touchy nanotubes work better when clean: Rice, Swansea scientists show that decontaminating nanotubes can simplify nanoscale devices January 4th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project