Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > UNIST research team opens graphene band-gap

This is a schematic representation for the formation of BCN-graphene via solvothermal reaction between carbon tetrachloride (CCl4) boron tribromide (BBr3) and nitrogen (N2) in the presence of potassium (K).

Credit: UNIST
This is a schematic representation for the formation of BCN-graphene via solvothermal reaction between carbon tetrachloride (CCl4) boron tribromide (BBr3) and nitrogen (N2) in the presence of potassium (K).

Credit: UNIST

Abstract:
Ulsan National Institute of Science and Technology (UNIST) announced a method for the mass production of boron/nitrogen co-doped graphene nanoplatelets, which led to the fabrication of a graphene-based field -effect transistor (FET) with semiconducting nature. This opens up opportunities for practical use in electronic devices.

UNIST research team opens graphene band-gap

Ulsan, Korea | Posted on December 18th, 2013

The Ulsan National Institute of Science and Technology (UNIST) research team led by Prof. Jong-Beom Baek have discovered an efficient method for the mass production of boron/nitrogen co-doped graphene nanoplatelets (BCN-graphene) via a simple solvothermal reaction of BBr3/CCl4/N2 in the presence of potassium. This work was published in "Angewandte Chemie International Edition" as a VIP ("Very Important Paper".

Since graphene was experimentally discovered in 2004, it has been the focus of vigorous applied research due to its outstanding properties such as high specific surface area, good thermal and electrical conductivities, and many more properties.

However, its Achilles heel is a vanishing band-gap for semiconductor application. As a result, it is not suitable for logic applications, because devices cannot be switched off. Therefore, graphene must be modified to produce a band-gap, if it is to be used in electronic devices.

Various methods of making graphene-based field effect transistors (FETs) have been exploited, including doping graphene, tailoring graphene-like a nanoribbon, and using boron nitride as a support. Among the methods of controlling the band-gap of graphene, doping methods show the most promisinge in terms of industrial scale feasibility.

Although world leading researchers have tried to add boron into graphitic framework to open its band-gap for semiconductor applications, there has not been any notable success yet. Since the atomic size of boron (85 pm) is larger than that of carbon (77 pm), it is difficult to accommodate boron into the graphitic network structure.

A new synthetic protocol developed by a research team from UNIST, a leading Korean university, has revealed that boron/nitrogen co-doping is only feasible when carbon tetrachloride (CCl4 ) is treated with boron tribromide (BBr3 ) and nitrogen (N2) gas.

In order to help boron-doping into graphene structure, the research team used nitrogen (70 pm), which is a bit smaller than carbon and boron. The idea was very simple, but the result was surprising. Pairing two nitrogen atoms and two boron atoms can compensate for the atomic size mismatch. Thus, boron and nitrogen pairs can be easily introduced into the graphitic network. The resultant BCN-graphene generates a band-gap for FETs.

"Although the performance of the FET is not in the ranges of commercial silicon-based semiconductors, this initiative work should be the proof of a new concept and a great leap forward for studying graphene with band-gap opening," said Prof. Jong-Beom Baek.

"I believe this work is one of the biggest advancements in considering the viability of a simple synthetic approach," said Ph.D. candidate Sun-Min Jung, the first author of this article.

Prof. Baek explains the next step: "Now, the remaining challenge is fine-tuning a band-gap to improve the on/off current ratio for real device applications."

###

Information about the research

Other researchers in the team include Profs. Joon Hak Oh, Noejung Park, HuYoung Jeong and 6 graduate students.

The research work was funded by the National Research Foundation (NRF) of Korea, and the US Air Force Office of Scientific Research through the Asian Office of Aerospace R&D (AFOSR-AOARD).

####

For more information, please click here

Contacts:
Hyunho Lee

Copyright © Ulsan National Institute of Science and Technology(UNIST)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Ulsan National Institute of Science and Technology:

Homepage of Jong-Beom Baek:

Related News Press

News and information

Non-animal approach to predict impact of nanomaterials on human lung published Archives of Toxicology publishes workshop recommendations May 2nd, 2016

Making invisible physics visible: The Jayich Lab has created a new sensor technology that captures nanoscale images with high spatial resolution and sensitivity May 2nd, 2016

New drug-delivery approach holds potential for treating obesity May 2nd, 2016

Spintronics for future information technologies: Spin currents in topological insulators controlled May 2nd, 2016

Graphene/ Graphite

Cooling graphene-based film close to pilot-scale production April 30th, 2016

University of Illinois researchers create 1-step graphene patterning method April 27th, 2016

Atomic magnets using hydrogen and graphene April 27th, 2016

Electrically Conductive Graphene Ink Enables Printing of Biosensors April 23rd, 2016

Govt.-Legislation/Regulation/Funding/Policy

Making invisible physics visible: The Jayich Lab has created a new sensor technology that captures nanoscale images with high spatial resolution and sensitivity May 2nd, 2016

Clay nanotube-biopolymer composite scaffolds for tissue engineering May 1st, 2016

Cooling graphene-based film close to pilot-scale production April 30th, 2016

Personal cooling units on the horizon April 29th, 2016

Chip Technology

Spintronics for future information technologies: Spin currents in topological insulators controlled May 2nd, 2016

Cooling graphene-based film close to pilot-scale production April 30th, 2016

Exploring phosphorene, a promising new material April 29th, 2016

Researchers create a first frequency comb of time-bin entangled qubits: Discovery is a significant step toward multi-channel quantum communication and higher capacity quantum computers April 28th, 2016

Discoveries

Non-animal approach to predict impact of nanomaterials on human lung published Archives of Toxicology publishes workshop recommendations May 2nd, 2016

Making invisible physics visible: The Jayich Lab has created a new sensor technology that captures nanoscale images with high spatial resolution and sensitivity May 2nd, 2016

New drug-delivery approach holds potential for treating obesity May 2nd, 2016

Spintronics for future information technologies: Spin currents in topological insulators controlled May 2nd, 2016

Announcements

Non-animal approach to predict impact of nanomaterials on human lung published Archives of Toxicology publishes workshop recommendations May 2nd, 2016

Making invisible physics visible: The Jayich Lab has created a new sensor technology that captures nanoscale images with high spatial resolution and sensitivity May 2nd, 2016

New drug-delivery approach holds potential for treating obesity May 2nd, 2016

Spintronics for future information technologies: Spin currents in topological insulators controlled May 2nd, 2016

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Non-animal approach to predict impact of nanomaterials on human lung published Archives of Toxicology publishes workshop recommendations May 2nd, 2016

Making invisible physics visible: The Jayich Lab has created a new sensor technology that captures nanoscale images with high spatial resolution and sensitivity May 2nd, 2016

New drug-delivery approach holds potential for treating obesity May 2nd, 2016

Spintronics for future information technologies: Spin currents in topological insulators controlled May 2nd, 2016

Military

Making invisible physics visible: The Jayich Lab has created a new sensor technology that captures nanoscale images with high spatial resolution and sensitivity May 2nd, 2016

Nanograft seeded with 3 cell types promotes blood vessel formation to speed wound healing April 27th, 2016

The light stuff: A brand-new way to produce electron spin currents - Colorado State University physicists are the first to demonstrate using non-polarized light to produce a spin voltage in a metal April 26th, 2016

NRL reveals novel uniform coating process of p-ALD April 21st, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic