Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button

Home > Press > Researchers split water into hydrogen, oxygen using light, nanoparticles: Technology potentially could create a clean, renewable source of energy

Abstract:
Researchers from the University of Houston have found a catalyst that can quickly generate hydrogen from water using sunlight, potentially creating a clean and renewable source of energy.

Researchers split water into hydrogen, oxygen using light, nanoparticles: Technology potentially could create a clean, renewable source of energy

Houston, TX | Posted on December 17th, 2013

Their research, published online Sunday in Nature Nanotechnology, involved the use of cobalt oxide nanoparticles to split water into hydrogen and oxygen.

Jiming Bao, lead author of the paper and an assistant professor in the Department of Electrical and Computer Engineering at UH, said the research discovered a new photocatalyst and demonstrated the potential of nanotechnology in engineering a material's property, although more work remains to be done.

Bao said photocatalytic water-splitting experiments have been tried since the 1970s, but this was the first to use cobalt oxide and the first to use neutral water under visible light at a high energy conversion efficiency without co-catalysts or sacrificial chemicals. The project involved researchers from UH, along with those from Sam Houston State University, the Chinese Academy of Sciences, Texas State University, Carl Zeiss Microscopy LLC, and Sichuan University.

Researchers prepared the nanoparticles in two ways, using femtosecond laser ablation and through mechanical ball milling. Despite some differences, Bao said both worked equally well.

Different sources of light were used, ranging from a laser to white light simulating the solar spectrum. He said he would expect the reaction to work equally well using natural sunlight.

Once the nanoparticles are added and light applied, the water separates into hydrogen and oxygen almost immediately, producing twice as much hydrogen as oxygen, as expected from the 2:1 hydrogen to oxygen ratio in H2O water molecules, Bao said.

The experiment has potential as a source of renewable fuel, but at a solar-to-hydrogen efficiency rate of around 5 percent, the conversion rate is still too low to be commercially viable. Bao suggested a more feasible efficiency rate would be about 10 percent, meaning that 10 percent of the incident solar energy will be converted to hydrogen chemical energy by the process.

Other issues remain to be resolved, as well, including reducing costs and extending the lifespan of cobalt oxide nanoparticles, which the researchers found became deactivated after about an hour of reaction.

"It degrades too quickly," said Bao, who also has appointments in materials engineering and the Department of Chemistry.

The work, supported by the Welch Foundation, will lead to future research, he said, including the question of why cobalt oxide nanoparticles have such a short lifespan, and questions involving chemical and electronic properties of the material.

####

For more information, please click here

Contacts:
Jeannie Kever

713-743-0778

Copyright © University of Houston

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Starpharma initiates new DEP™ drug delivery program with AstraZeneca July 27th, 2016

Ageing can drive progress: Population ageing is likely to boost medicine, nanotechnology and robotics, but increase political risks July 27th, 2016

WSU researchers 'watch' crystal structure change in real time: Breakthrough made possible by new Argonne facility July 27th, 2016

Enhancing molecular imaging with light: New technology platform increases spectroscopic resolution by 4 fold July 27th, 2016

Discoveries

WSU researchers 'watch' crystal structure change in real time: Breakthrough made possible by new Argonne facility July 27th, 2016

Enhancing molecular imaging with light: New technology platform increases spectroscopic resolution by 4 fold July 27th, 2016

New nontoxic process promises larger ultrathin sheets of 2-D nanomaterials July 27th, 2016

Ultrasensitive sensor using N-doped graphene July 26th, 2016

Announcements

Starpharma initiates new DEP™ drug delivery program with AstraZeneca July 27th, 2016

Ageing can drive progress: Population ageing is likely to boost medicine, nanotechnology and robotics, but increase political risks July 27th, 2016

WSU researchers 'watch' crystal structure change in real time: Breakthrough made possible by new Argonne facility July 27th, 2016

Enhancing molecular imaging with light: New technology platform increases spectroscopic resolution by 4 fold July 27th, 2016

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Ageing can drive progress: Population ageing is likely to boost medicine, nanotechnology and robotics, but increase political risks July 27th, 2016

WSU researchers 'watch' crystal structure change in real time: Breakthrough made possible by new Argonne facility July 27th, 2016

New nontoxic process promises larger ultrathin sheets of 2-D nanomaterials July 27th, 2016

Ultrasensitive sensor using N-doped graphene July 26th, 2016

Energy

New nontoxic process promises larger ultrathin sheets of 2-D nanomaterials July 27th, 2016

Designing climate-friendly concrete, from the nanoscale up: New understanding of concrete’s properties could increase lifetime of the building material, decrease emissions July 25th, 2016

An accelerated pipeline to open materials research: ORNL workflow system unites imaging, algorithms, and HPC to advance materials discovery and design July 24th, 2016

Researchers discover key mechanism for producing solar cells: Better understanding of perovskite solar cells could boost widespread use July 21st, 2016

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

Scientists test nanoparticle drug delivery in dogs with osteosarcoma July 26th, 2016

Ultra-flat circuits will have unique properties: Rice University lab studies 2-D hybrids to see how they differ from common electronics July 25th, 2016

Accurate design of large icosahedral protein nanocages pushes bioengineering boundaries: Scientists used computational methods to build ten large, two-component, co-assembling icosahedral protein complexes the size of small virus coats July 25th, 2016

New reaction for the synthesis of nanostructures July 21st, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic