Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Injured nerves regrow when fidgetin enzyme is suppressed: Fidgetin inhibition: Potential new therapeutic approach to promote tissue regeneration & repair of broken cell connections

Abstract:
Suppressing the enzyme fidgetin promotes the re-growth of experimentally injured nerve cells and their connections, according to research with laboratory rats that will be presented Tuesday, Dec. 17, at the American Society for Cell Biology (ASCB) annual meeting in New Orleans.

Injured nerves regrow when fidgetin enzyme is suppressed: Fidgetin inhibition: Potential new therapeutic approach to promote tissue regeneration & repair of broken cell connections

Bethesda, MD | Posted on December 17th, 2013

If additional studies confirm these results, fidgetin inhibition could be a potential new therapeutic approach to promote tissue regeneration and repair of the broken cell connections that occur in a wide range of conditions including myocardial infarction, or heart attack, chronic cutaneous wounds and spinal cord injury.

To explore the enzyme's role in neurons, Peter Baas, Ph.D., Lanfranco Leo and colleagues at Drexel University in Philadelphia collaborated with David Sharp, Ph.D., of Albert Einstein College of Medicine in Bronx, NY.

Dr. Sharp was the first scientist to determine that during growth and development, fidgetin prunes unstable microtubule scaffolding in cells. Microtubules hold up a cell's cytoskeleton.

Fidgetin also prunes unneeded connections in the neuronal network as it grows in complexity and size during childhood and adolescence.

The ability of nerves to grow and prune diminishes as individuals mature. As a result, neurons of adults have lost most of the power to reshape themselves. This characteristic is good for the hard wiring of the nervous system but a bitter pill because adult nerves that are badly injured or severed will not regenerate.

To determine whether fidgetin prevents nerve regrowth in the adult brain, the researchers used a novel nanoparticle technology to block the enzyme in the injured nerves of adult rats. By blocking fidgetin, they were able to restart growth in the animal model, a finding with potential implications for many types of human nerve injury, including the most difficult challenge, spinal cord injury.

The nanoparticle technology was developed by Joel Friedman, M.D., Ph.D., and Adam Friedman, M.D., of Albert Einstein College of Medicine. The tiny nanoparticles were infused with siRNA, small interfering RNA, that bound the messenger RNA (mRNA) transcribed from the fidgetin gene. The siRNA binding caused the mRNA to be tagged for destruction. As a result, the mRNA for fidgetin was not translated, and the fidgetin enzyme was not produced by the cell.

This study builds on Dr. Sharp's other research that showed that inhibiting fidgetin might help the healing of wounds, such as skin burns as well as heart tissue damaged by a heart attack.

"Depleting novel microtubule-related proteins represents a new and proprietary approach," according to the researchers, who have formed a biotech company, MicroCures Inc., to commercialize their approach. Among its potential uses, they said, would be "tissue regeneration and repair in a wide range of therapeutic contexts including: spinal cord injury, myocardial infarction, and acute and chronic cutaneous wounds."

The enzyme fidgetin is the protein product of the fidgetin gene, which was first identified in a mutant strain of "fidget" mice, first bred in 1943 by Hans Grüneberg and named for their fidgety behavior.

The research was funded in part by grants to the laboratories of Drs. Baas and Sharp from the Craig H. Neilsen Foundation and the U.S. Department of Defense.

Author will present, "Fidgetin restrains axonal growth during neuronal maturation by a microtubule-based mechanism and provides a means for therapeutically enhancing regeneration of injured adult axons," on Tuesday, Dec. 17, during the 12 noon to 1:30 p.m. poster session, "Neuronal Cytoskeleton II."

Drs. Sharp and Baas are co-senior authors. Other authors are Lanfranco Leo, Timothy O. Austin, Andrew Matamoros, Wenqian Yu and Daniel R. Marenda of Drexel University.

####

For more information, please click here

Contacts:
Cathy Yarbrough

858-243-1814

John Fleischman


Peter W. Baas, Ph.D.
Drexel University College of Medicine
Philadelphia, PA
(215) 880 4226


David J. Sharp, Ph.D.
Albert Einstein College of Medicine


and

Chief Science Officer
MicroCures Inc.
Santa Cruz, CA

Copyright © American Society for Cell Biology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

UTSA study describes new minimally invasive device to treat cancer and other illnesses: Medicine diffusion capsule could locally treat multiple ailments and diseases over several weeks December 3rd, 2016

Novel Electrode Structure Provides New Promise for Lithium-Sulfur Batteries December 3rd, 2016

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Govt.-Legislation/Regulation/Funding/Policy

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Quantum obstacle course changes material from superconductor to insulator December 1st, 2016

Throwing new light on printed organic solar cells December 1st, 2016

Nanomedicine

UTSA study describes new minimally invasive device to treat cancer and other illnesses: Medicine diffusion capsule could locally treat multiple ailments and diseases over several weeks December 3rd, 2016

Nanobiotix Provides Update on Global Development of Lead Product NBTXR3: Seven clinical trials across the world: More than 2/3 of STS patients recruited in the “act.in.sarc” Phase II/III trial: Phase I/II prostate cancer trial now recruiting in the U.S. November 28th, 2016

From champagne bubbles, dance parties and disease to new nanomaterials: Understanding nucleation of protein filaments might help with Alzheimer's Disease and type 2 Diabetes November 24th, 2016

Nanopolymer-modified protein array can pinpoint hard-to-find cancer biomarker November 17th, 2016

Discoveries

UTSA study describes new minimally invasive device to treat cancer and other illnesses: Medicine diffusion capsule could locally treat multiple ailments and diseases over several weeks December 3rd, 2016

Novel Electrode Structure Provides New Promise for Lithium-Sulfur Batteries December 3rd, 2016

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Announcements

UTSA study describes new minimally invasive device to treat cancer and other illnesses: Medicine diffusion capsule could locally treat multiple ailments and diseases over several weeks December 3rd, 2016

Novel Electrode Structure Provides New Promise for Lithium-Sulfur Batteries December 3rd, 2016

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

UTSA study describes new minimally invasive device to treat cancer and other illnesses: Medicine diffusion capsule could locally treat multiple ailments and diseases over several weeks December 3rd, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Quantum obstacle course changes material from superconductor to insulator December 1st, 2016

Throwing new light on printed organic solar cells December 1st, 2016

Military

Quantum obstacle course changes material from superconductor to insulator December 1st, 2016

Physics, photosynthesis and solar cells: Researchers combine quantum physics and photosynthesis to make discovery that could lead to highly efficient, green solar cells November 30th, 2016

New method for analyzing crystal structure: Exotic materials called photonic crystals reveal their internal characteristics with new method November 30th, 2016

Inside tiny tubes, water turns solid when it should be boiling: MIT researchers discover astonishing behavior of water confined in carbon nanotubes November 30th, 2016

Events/Classes

IEDM: Leti CEO Marie Semeria to Give Opening-day Keynote on Impact of ‘Hyperconnectivity’ and IoT: Speech to Portray Key Role Nonprofit Research and Technology Organizations Play in Making Technology More Efficient and Ensuring Safety and Security November 29th, 2016

Leti and Grenoble Partners Demonstrate World’s 1st Qubit Device Fabricated in CMOS Process: Paper by Leti, Inac and University of Grenoble Alpes Published in Nature Communications November 28th, 2016

Cutting-edge nanotechnologies are breaking into industries November 18th, 2016

IEDM: CEO Marie Semeria to Deliver Opening Day Keynote at IEDM 2016; Institute to Present 13 Papers November 17th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project