Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button

Home > Press > Scientists Use 3-D Printing Method to Produce Nanocomposite Scaffolds

Abstract:
Iranian researchers from Sharif University of Technology in association with their colleagues from Max Planck Institute, Germany, produced nanocomposite scaffolds for tissue engineering with controlled pores by using indirect three-dimensional printing method.

Scientists Use 3-D Printing Method to Produce Nanocomposite Scaffolds

Tehran, Iran | Posted on December 16th, 2013

Cells are naturally surrounded by extracellular matrix (ECM). The matrix supports and guides cellular behavior and its vital functions, including migration, adhesion, proliferation, and differentiation with the help of chemical and physical signals. Therefore, the designing of internal pores and controlling external dimensions of the scaffold with controlled structure is one of the most important effective parameters on the performance of tissue engineering scaffolds used in the treatment of bone damages to guide cellular behavior in interaction with ECM.

In this research, nanocomposite scaffolds with controlled pore structure were produced through indirect three-dimensional printing method. The pores contained various nanoparticles such as titanium dioxide and bioactive glass in micrometric and nanometric size. Growth kinetics of bone tissue was investigated on the product through in-vitro tests. To this end, the sacrificial cast was made with three dimensional structures and its surface was coated with paraffin.

Results of the research showed that the effective interface of particles and cells increase as nanoparticles are added to the polymeric bed due to the high tendency of nanoparticles to accumulate in the surface. Moreover, the nanoparticles affect cell adhesion, proliferation, and differentiation by creating nanotopography, increasing the coarseness and surface roughness.

Results of the research have been published in Journal of Biomedical Materials Research A, vol. 101, issue 10, October 2013, pp. 2796-2806.

####

For more information, please click here

Copyright © Fars News Agency

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New flexible material can make any window 'smart' August 23rd, 2016

University of Puerto Rico and NASA back in the news XEI reports August 23rd, 2016

Nanoparticles that speed blood clotting may someday save lives August 23rd, 2016

Spider silk: Mother Nature's bio-superlens August 22nd, 2016

Nanomedicine

Nanoparticles that speed blood clotting may someday save lives August 23rd, 2016

A new way to display the 3-D structure of molecules: Metal-organic frameworks provide a new platform for solving the structure of hard-to-study samples August 21st, 2016

Curbing the life-long effects of traumatic brain injury August 19th, 2016

Lab team spins ginger into nanoparticles to heal inflammatory bowel disease August 19th, 2016

Discoveries

New flexible material can make any window 'smart' August 23rd, 2016

Nanoparticles that speed blood clotting may someday save lives August 23rd, 2016

Researchers reduce expensive noble metals for fuel cell reactions August 22nd, 2016

Spider silk: Mother Nature's bio-superlens August 22nd, 2016

Announcements

New flexible material can make any window 'smart' August 23rd, 2016

University of Puerto Rico and NASA back in the news XEI reports August 23rd, 2016

Nanoparticles that speed blood clotting may someday save lives August 23rd, 2016

Researchers reduce expensive noble metals for fuel cell reactions August 22nd, 2016

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

New flexible material can make any window 'smart' August 23rd, 2016

Nanoparticles that speed blood clotting may someday save lives August 23rd, 2016

Researchers reduce expensive noble metals for fuel cell reactions August 22nd, 2016

Spider silk: Mother Nature's bio-superlens August 22nd, 2016

Research partnerships

A new way to display the 3-D structure of molecules: Metal-organic frameworks provide a new platform for solving the structure of hard-to-study samples August 21st, 2016

Researchers watch catalysts at work August 19th, 2016

Tracing barnacle's footprint August 19th, 2016

Legions of nanorobots target cancerous tumors with precision: Administering anti-cancer drugs redefined August 16th, 2016

Printing/Lithography/Inkjet/Inks

Tailored probes for atomic force microscopes: 3-D laser lithography enhances microscope for studying nanostructures in biology and engineering/ publication in Applied Physics Letters August 11th, 2016

Smarter self-assembly opens new pathways for nanotechnology: Brookhaven Lab scientists discover a way to create billionth-of-a-meter structures that snap together in complex patterns with unprecedented efficiency August 9th, 2016

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

Perovskite solar cells surpass 20 percent efficiency: EPFL researchers are pushing the limits of perovskite solar cell performance by exploring the best way to grow these crystals June 13th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic