Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Simple, Cost-Effective Method Found for Production of Manganese Oxide Nanopowder

Abstract:
Iranian researchers from the Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, succeeded in the production of manganese oxide nanopowder through a simple, cost-effective and environmental-friendly method.

Simple, Cost-Effective Method Found for Production of Manganese Oxide Nanopowder

Tehran, Iran | Posted on December 14th, 2013

The product has wide applications in petrochemical industries and battery fabrication.

Taking into consideration the wide applications of the products, researchers looked for a simple and cheap method in this research to produce a special type of manganese oxide. They also investigated the oxidation activity of water in the presence of the produced manganese oxide.

According to Dr. Mohammad Mehdi Najafpour, one of the researcers of the plan, the majority of the methods to produce manganese oxide require surfactant organic solvents and high temperature conditions. However, simple methods have been developed, which are mostly based on the use of high temperature in the production of common metal oxides.

"It was turned out in this research that some cheap compounds of manganese can be degraded to manganese nano-oxides in the presence of humidity at temperatures around 100C or even less," he added.

The researchers found out that manganese nano-oxides start to form after a few hours when a thick solution of manganese nitrate (II) is placed at a temperature of 70-90C.

Results of the research showed that manganese nano-oxides produced in the presence of various oxidants was able to oxidize water to oxygen, and alkenes to epoxides. The rate and efficiency of the reactions showed significant increase in comparison with samples at micrometric scale. Reduction in the size of nanoparticles can be considered the main reason to this fact.

Results of the research have been published in details in Dalton Transactions, vol. 41, issue 36, July 2012, pp. 11026-11031.

####

For more information, please click here

Copyright © Fars News Agency

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Scientists discover new 'boat' form of promising semiconductor: GeSe Uncommon form attenuates semiconductor's band gap size March 23rd, 2017

Caught on camera -- chemical reactions 'filmed' at the single-molecule level March 22nd, 2017

Rare-earths become water-repellent only as they age March 22nd, 2017

Pulverizing e-waste is green, clean -- and cold: Rice, Indian Institute researchers use cryo-mill to turn circuit boards into separated powders March 21st, 2017

Discoveries

Scientists discover new 'boat' form of promising semiconductor: GeSe Uncommon form attenuates semiconductor's band gap size March 23rd, 2017

Caught on camera -- chemical reactions 'filmed' at the single-molecule level March 22nd, 2017

Rare-earths become water-repellent only as they age March 22nd, 2017

Pulverizing e-waste is green, clean -- and cold: Rice, Indian Institute researchers use cryo-mill to turn circuit boards into separated powders March 21st, 2017

Announcements

Scientists discover new 'boat' form of promising semiconductor: GeSe Uncommon form attenuates semiconductor's band gap size March 23rd, 2017

Caught on camera -- chemical reactions 'filmed' at the single-molecule level March 22nd, 2017

Rare-earths become water-repellent only as they age March 22nd, 2017

Pulverizing e-waste is green, clean -- and cold: Rice, Indian Institute researchers use cryo-mill to turn circuit boards into separated powders March 21st, 2017

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Scientists discover new 'boat' form of promising semiconductor: GeSe Uncommon form attenuates semiconductor's band gap size March 23rd, 2017

Caught on camera -- chemical reactions 'filmed' at the single-molecule level March 22nd, 2017

Rare-earths become water-repellent only as they age March 22nd, 2017

Pulverizing e-waste is green, clean -- and cold: Rice, Indian Institute researchers use cryo-mill to turn circuit boards into separated powders March 21st, 2017

Energy

Researchers develop groundbreaking process for creating ultra-selective separation membranes: Discovery could greatly improve energy-efficiency of separation and purification processes in the chemical and petrochemical industries March 15th, 2017

New nanofiber marks important step in next generation battery development March 14th, 2017

Perovskite edges can be tuned for optoelectronic performance: Layered 2D material improves efficiency for solar cells and LEDs March 10th, 2017

Space energy technology restored to make power stations more efficient: Scientists use graphene to reinvent abandoned heat energy converter technology March 7th, 2017

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

New nanofiber marks important step in next generation battery development March 14th, 2017

Imaging the inner workings of a sodium-metal sulfide battery for first time: Understanding how the structural and chemical makeup of the material changes during the charge/discharge process could help scientists advance battery design for future energy storage needs March 9th, 2017

Tweaking electrolyte makes better lithium-metal batteries: A pinch of electrolyte additive gives rechargeable battery stability, longer life March 2nd, 2017

Triboelectric Nanogenerators Boost Mass Spectrometry Performance March 1st, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project