Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Simple, Cost-Effective Method Found for Production of Manganese Oxide Nanopowder

Abstract:
Iranian researchers from the Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, succeeded in the production of manganese oxide nanopowder through a simple, cost-effective and environmental-friendly method.

Simple, Cost-Effective Method Found for Production of Manganese Oxide Nanopowder

Tehran, Iran | Posted on December 14th, 2013

The product has wide applications in petrochemical industries and battery fabrication.

Taking into consideration the wide applications of the products, researchers looked for a simple and cheap method in this research to produce a special type of manganese oxide. They also investigated the oxidation activity of water in the presence of the produced manganese oxide.

According to Dr. Mohammad Mehdi Najafpour, one of the researcers of the plan, the majority of the methods to produce manganese oxide require surfactant organic solvents and high temperature conditions. However, simple methods have been developed, which are mostly based on the use of high temperature in the production of common metal oxides.

"It was turned out in this research that some cheap compounds of manganese can be degraded to manganese nano-oxides in the presence of humidity at temperatures around 100°C or even less," he added.

The researchers found out that manganese nano-oxides start to form after a few hours when a thick solution of manganese nitrate (II) is placed at a temperature of 70-90°C.

Results of the research showed that manganese nano-oxides produced in the presence of various oxidants was able to oxidize water to oxygen, and alkenes to epoxides. The rate and efficiency of the reactions showed significant increase in comparison with samples at micrometric scale. Reduction in the size of nanoparticles can be considered the main reason to this fact.

Results of the research have been published in details in Dalton Transactions, vol. 41, issue 36, July 2012, pp. 11026-11031.

####

For more information, please click here

Copyright © Fars News Agency

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Industrial Nanotech, Inc. to Publish PCAOB Audited Financials July 31st, 2014

Nanostructured metal-oxide catalyst efficiently converts CO2 to methanol: Highly reactive sites at interface of 2 nanoscale components could help overcome hurdle of using CO2 as a starting point in producing useful products July 31st, 2014

Carnegie Mellon Chemists Create Nanofibers Using Unprecedented New Method July 31st, 2014

Pressure probing potential photoelectronic manufacturing compound July 31st, 2014

Discoveries

Nanostructured metal-oxide catalyst efficiently converts CO2 to methanol: Highly reactive sites at interface of 2 nanoscale components could help overcome hurdle of using CO2 as a starting point in producing useful products July 31st, 2014

Carnegie Mellon Chemists Create Nanofibers Using Unprecedented New Method July 31st, 2014

Pressure probing potential photoelectronic manufacturing compound July 31st, 2014

Watching Schrödinger's cat die (or come to life): Steering quantum evolution & using probes to conduct continuous error correction in quantum computers July 30th, 2014

Announcements

Industrial Nanotech, Inc. to Publish PCAOB Audited Financials July 31st, 2014

Nanostructured metal-oxide catalyst efficiently converts CO2 to methanol: Highly reactive sites at interface of 2 nanoscale components could help overcome hurdle of using CO2 as a starting point in producing useful products July 31st, 2014

Carnegie Mellon Chemists Create Nanofibers Using Unprecedented New Method July 31st, 2014

Pressure probing potential photoelectronic manufacturing compound July 31st, 2014

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals

Carnegie Mellon Chemists Create Nanofibers Using Unprecedented New Method July 31st, 2014

Pressure probing potential photoelectronic manufacturing compound July 31st, 2014

NanoScience: Giants of the Infinitesimal July 31st, 2014

From Narrow to Broad July 30th, 2014

Energy

Nanostructured metal-oxide catalyst efficiently converts CO2 to methanol: Highly reactive sites at interface of 2 nanoscale components could help overcome hurdle of using CO2 as a starting point in producing useful products July 31st, 2014

From Narrow to Broad July 30th, 2014

Oregon chemists eye improved thin films with metal substitution: Solution-based inorganic process could drive more efficient electronics and solar devices July 21st, 2014

Steam from the sun: New spongelike structure converts solar energy into steam July 21st, 2014

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics

Tough foam from tiny sheets: Rice University lab uses atom-thick materials to make ultralight foam July 29th, 2014

Stanford team achieves 'holy grail' of battery design: A stable lithium anode - Engineers use carbon nanospheres to protect lithium from the reactive and expansive problems that have restricted its use as an anode July 27th, 2014

Nano-supercapacitors for electric cars July 25th, 2014

Compact Vibration Harvester Power Supply with Highest Efficiency Opens Door to “Fix-and-Forget” Sensor Nodes July 23rd, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE