Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Light and sound fire scientists’ imaginations Rice University researchers lead review of photonic, phononic metamaterials

Rice University scientists Ned Thomas (left), dean of the George R. Brown School of Engineering, and Jae-Hwang Lee are the primary authors of a new review of photonic, phononic and phoXonics research in the journal Advanced Materials.Credit: Tommy LaVergne/Rice University
Rice University scientists Ned Thomas (left), dean of the George R. Brown School of Engineering, and Jae-Hwang Lee are the primary authors of a new review of photonic, phononic and phoXonics research in the journal Advanced Materials.

Credit: Tommy LaVergne/Rice University

Abstract:
Strategies to manipulate light and sound go back to the first spherical glass bead and the pounding of the first hollow log. But their full potential is only just becoming apparent, according to a review by materials scientists at Rice University and their colleagues.

Light and sound fire scientists’ imaginations Rice University researchers lead review of photonic, phononic metamaterials

Houston, TX | Posted on December 13th, 2013

New abilities to corral light and sound from the macroscale to the nanoscale with structured polymers could deliver profound changes in the way we live, said materials scientist Edwin "Ned" Thomas, the William and Stephanie Sick Dean of the George R. Brown School of Engineering at Rice. Such advanced materials could not only revolutionize computing and sensing technology but could also bring about new strategies for soundproofing buildings and cars, managing heat and cold and making submarines invisible to sonar, he said.

"And then there's the invisibility cloak, like in ‘Harry Potter,'" Thomas said. "That's a special effect in the movie, but we're getting to the point where we can do it for real."

Thomas and Rice research scientist Jae-Hwang Lee are primary authors of the comprehensive summary of research into photonics (light), phononics (sound) and hybrid phoXonics (light and sound) materials. The chapter-length, open-access review titled "Ordered Polymer Structures for the Engineering of Photons and Phonons" was published online today by the journal Advanced Materials.

Manipulating light has been around for a long time, said Thomas, who specializes in polymeric materials. "Photonics made a significant advance by showing we can confine light and make it go where we want it to go," he said. "Now we're molding the flow of elastic waves - of which sound is a subset - in similar ways. And there's growing emphasis on devices that handle light and el­­­­­­astic waves simultaneously to do cool things - not with one or the other, but with both."

The review follows by four years a book on the topic by Thomas and Massachusetts Institute of Technology (MIT) colleague Martin Maldovan. "There have been a lot of advances since then," Thomas said. "When we were asked by the journal to do this, I told the editor I didn't think it was going to be a short review."

He was right. The review cites more than 400 papers as it details dozens of theories and suggests techniques for the manufacture of devices, along with a few original ideas "we wanted in the literature," Thomas said.

The review primarily deals with photonics and its close relative, plasmonics, a topic of great interest at Rice's Laboratory for Nanophotonics. But the last third of the paper dives into phononics. Treating sound waves somewhat like light waves is a fairly recent approach in materials science, but research into the nanoscale manipulation of sound using materials with periodic mechanical impedance is rising quickly, Thomas said.

"Phononics for sound is probably even more practical than photonics for light, in a way," he said. "Everybody wants to control sound: either get rid of it, enhance it or filter certain frequencies. And this field's moving fast."

The review shows the breadth of research into fashioning polymers that create band gaps for sound and light similar to those that give semiconductors their unique electronic properties. A band gap can be tuned by patterning the materials via a number of techniques to allow only particular frequencies of sound or light to pass through while blocking all others.

The ability to control such properties on the micron scale could make a soundproofing material nearly as thin as a layer of paint, Thomas said. In fact, for some applications it could direct rather than absorb: These thin materials would guide sound waves around an object and emit them on the far side.

That would make submarines effectively invisible, he said. "Normal materials that essentially absorb sound are thick and big. Just look inside any concert hall. With phononics we should be able to make metamaterials that are just as effective but in a smaller form factor. You can't coat a submarine with a 300-foot-thick membrane over the entire hull. But if you could coat it with something half-a-centimeter thick, game on."

Thomas thinks scientists are on the brink of a materials revolution, and the new paper presents plenty of evidence. "This excites me because we're not just making incremental improvements to known properties; usually, materials science is about the material and the structure and whatever makes sense for the application. But we're flipping that. The boundaries we know about don't contain all the solutions. There are things beyond our mindset that contain answers to questions we haven't even imagined.

"The people I work with - the physicists, electrical engineers, materials scientists, chemists - they're all excited about this because they know there are probably way more surprises in the future," he said.

Co-authors are Rice postdoctoral researchers Seog-Jin Jeon and Ori Stein; Yale University postdoctoral researcher Jonathan Singer; Cheong Yang Koh, a researcher at DSO National Laboratories in Singapore; and Maldovan, a research scientist at MIT.

The Asian Office of Aerospace Research and Development through the Defense Thread Reduction Agency and the U.S. Army Research Office through the Institute of Soldier Nanotechnology at MIT supported the research.

####

About Rice University
Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation’s top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,708 undergraduates and 2,374 graduate students, Rice’s undergraduate student-to-faculty ratio is 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice has been ranked No. 1 for best quality of life multiple times by the Princeton Review and No. 2 for “best value” among private universities by Kiplinger’s Personal Finance. To read “What they’re saying about Rice,” go to tinyurl.com/AboutRiceU.

Follow Rice News and Media Relations via Twitter @RiceUNews

For more information, please click here

Contacts:
David Ruth
713-348-6327


Mike Williams
713-348-6728

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Read the paper at:

Sound Ideas:

Edwin “Ned” Thomas:

Related News Press

News and information

University of Tehran Researchers Invent Non-Enzyme Sensor to Detect Blood Sugar April 23rd, 2014

Gold nanoparticles help target, quantify breast cancer gene segments in a living cell April 23rd, 2014

Study finds long-term survival of human neural stem cells transplanted into primate brain April 23rd, 2014

High-Performance, Low-Cost Ultracapacitors Built with Graphene and Carbon Nanotubes: Future devices based on technology could bridge gap between batteries and conventional capacitors in portable electronics and hybrid electric vehicles April 23rd, 2014

Govt.-Legislation/Regulation/Funding/Policy

Gold nanoparticles help target, quantify breast cancer gene segments in a living cell April 23rd, 2014

Atomic switcheroo explains origins of thin-film solar cell mystery April 23rd, 2014

High-Performance, Low-Cost Ultracapacitors Built with Graphene and Carbon Nanotubes: Future devices based on technology could bridge gap between batteries and conventional capacitors in portable electronics and hybrid electric vehicles April 23rd, 2014

Guo Lab Shows Potential of RNA as Heat-resistant Polymer Material for Nanoarchitectures April 23rd, 2014

Announcements

Characterizing inkjet inks: Malvern Instruments presents new rheological research April 23rd, 2014

NanoSafe, Inc. announces the addition of the Labconco Protector® Glove Box to its NanoSafe Tested™ registry April 23rd, 2014

Study finds long-term survival of human neural stem cells transplanted into primate brain April 23rd, 2014

High-Performance, Low-Cost Ultracapacitors Built with Graphene and Carbon Nanotubes: Future devices based on technology could bridge gap between batteries and conventional capacitors in portable electronics and hybrid electric vehicles April 23rd, 2014

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals

Gold nanoparticles help target, quantify breast cancer gene segments in a living cell April 23rd, 2014

Economics = MC2 -- A portrait of the modern physics startup: Successful companies founded by physicists often break the Silicon Valley model, according to new American Institute of Physics report April 23rd, 2014

Study finds long-term survival of human neural stem cells transplanted into primate brain April 23rd, 2014

High-Performance, Low-Cost Ultracapacitors Built with Graphene and Carbon Nanotubes: Future devices based on technology could bridge gap between batteries and conventional capacitors in portable electronics and hybrid electric vehicles April 23rd, 2014

Military

Cloaked DNA nanodevices survive pilot mission: Successful foray opens door to virus-like DNA nanodevices that could diagnose diseased tissues and manufacture drugs to treat them April 22nd, 2014

'Exotic' material is like a switch when super thin April 18th, 2014

Tiny particles could help verify goods: Chemical engineers hope smartphone-readable microparticles could crack down on counterfeiting April 15th, 2014

Targeting cancer with a triple threat: MIT chemists design nanoparticles that can deliver three cancer drugs at a time April 15th, 2014

Photonics/Optics/Lasers

High-temperature plasmonics eyed for solar, computer innovation April 17th, 2014

Scientists Capture Ultrafast Snapshots of Light-Driven Superconductivity: X-rays reveal how rapidly vanishing 'charge stripes' may be behind laser-induced high-temperature superconductivity April 16th, 2014

Lumerical files a provisional patent that extends the standard eigenmode expansion propagation technique to better address waveguide component design. Lumerical’s EME propagation tool will address a wide set of waveguide applications in silicon photonics and integrated optics April 16th, 2014

Near-field Nanophotonics Workshop in Boston April 14th, 2014

NanoNews-Digest
The latest news from around the world, FREE







  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE