Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Oregon scientists offer new insights on controlling nanoparticle stability: New findings could enhance stabilizing or destabilizing nanoparticles, depending on their uses

University of Oregon chemistry professor James Hutchison has uncovered important information about the stability of nanoparticles that could help drive more precise preparation of particles or precursors for thin films.

Credit: University of Oregon
University of Oregon chemistry professor James Hutchison has uncovered important information about the stability of nanoparticles that could help drive more precise preparation of particles or precursors for thin films.

Credit: University of Oregon

Abstract:
University of Oregon chemists studying the structure of ligand-stabilized gold nanoparticles have captured fundamental new insights about their stability. The information, they say, could help to maintain a desired, integral property in nanoparticles used in electronic devices, where stability is important, or to design them so they readily condense into thin films for such things as inks or catalysts in electronic or solar devices.

Oregon scientists offer new insights on controlling nanoparticle stability: New findings could enhance stabilizing or destabilizing nanoparticles, depending on their uses

Eugene, OR | Posted on December 9th, 2013

In a project — detailed in the Nov. 27 issue of the Journal of Physical Chemistry C — doctoral student Beverly L. Smith and James E. Hutchison, who holds the Lokey-Harrington Chair in Chemistry at the UO, analyzed how nanoparticle size and molecules on their surfaces, called ligands, influence structural integrity under rising temperatures.

They focused on nanoparticles less than two nanometers in diameter — the smallest studied to date — to better understand structural stability of these tiny particles being engineered for use in electronics, medicine and other materials. Whether a nanoparticle needs to remain stable or condense depends on how they are being used. Those used as catalysts in industrial chemical processing or quantum dots for lighting need to remain intact; if they are precursors for coatings in solar devices or for printing ink, nanoparticles need to be unstable so they sinter and condense into a thin mass.

For their experiments, Smith and Hutchison produced gold nanoparticles in four well-controlled sizes, ranging from 0.9 nanometers to 1.5 nanometers, and analyzed ligand loss and sintering with thermogravimetric analysis and differential scanning calorimetry, and examined the resulting films by scanning electron microscopy and X-ray photoelectron spectroscopy. As the nanoparticles were heated at 5 degrees Celsius per minute, from room temperature to 600 degrees Celsius, the nanoparticles began to transform near 150 degrees Celsius.

The researchers found that smaller nanoparticles have better structural integrity than larger-sized particles that have been tested. In other words, Hutchison said, they are less likely to lose their ligands and bind together. "If you have unstable particles, then the property you want is fleeting," he said. "Either the light emission degrades over time and you're done, or the metal becomes inactive and you're done. In that case, you want to preserve the function and keep the particles from aggregating."The opposite is desired for Hutchison and others working in the National Science Foundation-funded Center for Sustainable Materials Chemistry, a multi-universities collaboration led by the UO and Oregon State University. Researchers there are synthesizing nanoparticles as precursors for thin films.

"We want solution precursors that can lead to inorganic thin films for use in electronics and solar industries," said Hutchison, who also is a member of the UO Materials Science Institute.

"In this case, we want to know how to keep our nanoparticles or other precursors stable enough in solution so that we can work with them, using just a tiny amount of additional energy to make them unstable so that they condense into a film -- where the property that you want comes from the extended solid that is generated, not from the nanoparticles themselves."

The research, Hutchison said, identified weak sites on nanoparticles where ligands might pop off. If only a small amount do so, he said, separate nanoparticles are more likely to come together and begin the sintering process to create thin films.

"That's a really stabilizing effect that, in turn, kicks out all these ligands on the outside," he said. "The surface area decreases quickly and the particles get bigger, but now all the extra ligands gets excluded into the film and then, over time, the ligands vaporize and go away."

The coming apart, however, is a "catastrophic failure" if protecting against sintering is the goal. It may be possible to use the findings, he said, to explore ways to strengthen nanoparticles, such as developing ligands that bind in at least two sites or avoiding volatile ligands.

The process, as studied, produced porous gold films. "A next step might be to study how to manipulate the process to get a more dense film if that is desired," Hutchison said. Understanding how nanoparticles respond to certain conditions, such as changing temperatures, he added, may help researchers reduce waste in the manufacturing process.

"Researchers at the University of Oregon are re-engineering the science, manufacturing and business processes behind critical products," said Kimberly Andrews Espy, vice president for research and innovation and dean of the UO Graduate School. "This research analyzing the structural stability of nanoparticles by Dr. Hutchison and his team has the potential to improve the engineering of electronics, medicine and other materials, helping to foster a sustainable future for our planet and its people."

Smith, the paper's lead author, received a master's degree in chemistry in 2009 from the UO. She now is a doctoral student in Hutchison's lab. During the initial stages of the research, she was supported by the NSF's Integrative Graduate Education and Research Traineeship (IGERT) program. Funding from the Air Force Research Laboratory (grant No. FA8650-05-1-5041) to Hutchison also supported the research.

Hutchison also is a member of both the Oregon Nanoscience and Microtechnologies Institute (ONAMI) and Oregon BEST (Oregon Built Environment & Sustainable Technologies Center), which are state signature research initiatives.

####

About University of Oregon
The University of Oregon is among the 108 institutions chosen from 4,633 U.S. universities for top-tier designation of "Very High Research Activity" in the 2010 Carnegie Classification of Institutions of Higher Education. The UO also is one of two Pacific Northwest members of the Association of American Universities.

Follow UO Science on Facebook: http://www.facebook.com/UniversityOfOregonScience

UO Science on Twitter: http://twitter.com/UO_Research

More UO Science/Research News: http://uoresearch.uoregon.edu

For more information, please click here

Contacts:
Jim Barlow

541-346-3481

Source:
James Hutchison
professor
Department of Chemistry and Biochemistry
541-346-4228

Copyright © University of Oregon

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Iranian Experts Clean Uranium-Contaminated Water by Nano-Particles November 23rd, 2014

Novel Method Found for Connection of Metallic Alloys to Polymers November 23rd, 2014

New research project supports internationalisation in nano-research: Launch of new “Baltic Sea Network” November 22nd, 2014

3rd Iran-Proposed Nano Standard Approved by International Standard Organization November 22nd, 2014

Thin films

New way to move atomically thin semiconductors for use in flexible devices November 13th, 2014

Graphene Frontiers Partners with Madico to Accelerate Material Production: Deal to ignite and fulfill demand for industrial scale graphene film that supports energy, consumer electronics, membranes/filtration, solar and other applications November 12th, 2014

New materials for more powerful solar cells: Major breakthrough in solar energy November 11th, 2014

Drexel Engineers Improve Strength, Flexibility of Atom-Thick Films November 11th, 2014

Chip Technology

Nanometrics Announces Upcoming Investor Events November 19th, 2014

A novel method for identifying the body’s ‘noisiest’ networks November 19th, 2014

Researchers create & control spin waves, lifting prospects for enhanced info processing November 17th, 2014

VDMA Electronics Production Equipment: Growth track for 2014 and 2015 confirmed: Business climate survey shows robust industry sector November 14th, 2014

Discoveries

Iranian Experts Clean Uranium-Contaminated Water by Nano-Particles November 23rd, 2014

Novel Method Found for Connection of Metallic Alloys to Polymers November 23rd, 2014

NMTI announces breakthrough solutions for HAMR nanoantenna for next-generation ultra-high density magnetic storage November 21st, 2014

Nano Sorbents Able to Remove Pollutions Caused by Oil Derivatives November 20th, 2014

Announcements

Iranian Experts Clean Uranium-Contaminated Water by Nano-Particles November 23rd, 2014

Novel Method Found for Connection of Metallic Alloys to Polymers November 23rd, 2014

New research project supports internationalisation in nano-research: Launch of new “Baltic Sea Network” November 22nd, 2014

3rd Iran-Proposed Nano Standard Approved by International Standard Organization November 22nd, 2014

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Iranian Experts Clean Uranium-Contaminated Water by Nano-Particles November 23rd, 2014

Novel Method Found for Connection of Metallic Alloys to Polymers November 23rd, 2014

NMTI announces breakthrough solutions for HAMR nanoantenna for next-generation ultra-high density magnetic storage November 21st, 2014

Nano Sorbents Able to Remove Pollutions Caused by Oil Derivatives November 20th, 2014

Energy

UO-industry collaboration points to improved nanomaterials: University of Oregon microscope puts spotlight on the surface structure of quantum dots for designing new solar devices November 20th, 2014

Eight19 secures £1m funding: Investment to develop production technology, and expand commercial activities for organic photovoltaics November 19th, 2014

Total Nanofiber Solutions Company FibeRio® Launches The Fiber Engine® FX Series Systems with 10X Increase in Output November 18th, 2014

Researchers create & control spin waves, lifting prospects for enhanced info processing November 17th, 2014

Solar/Photovoltaic

UO-industry collaboration points to improved nanomaterials: University of Oregon microscope puts spotlight on the surface structure of quantum dots for designing new solar devices November 20th, 2014

Eight19 secures £1m funding: Investment to develop production technology, and expand commercial activities for organic photovoltaics November 19th, 2014

Graphene/nanotube hybrid benefits flexible solar cells: Rice University labs create novel electrode for dye-sensitized cells November 17th, 2014

New materials for more powerful solar cells: Major breakthrough in solar energy November 11th, 2014

Printing/Lithography/Inkjet/Inks

Canatu Launches CNB In-Mold Film for Transparent Touch on 3D Surfaces –in Cars, Household Appliances, Wearables, Portables November 20th, 2014

SouthWest NanoTechnologies to Demonstrate 3D Capacitive Touch Sensor Featuring Transparent, Thermoformed Carbon Nanotube Ink at Printed Electronics USA 2014 (Booth J25) -- “Conductive and Semiconducting Single-Wall Carbon Nanotube Inks” will be Topic of Company Presentation November 10th, 2014

Longhorn beetle inspires ink to fight counterfeiting November 5th, 2014

'Nanomotor lithography' answers call for affordable, simpler device manufacturing October 31st, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More












ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE