Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > The gene sequencing that everyone can afford in future

This is a typical nanopore sequencing process.

Credit: ©Science China Press
This is a typical nanopore sequencing process.

Credit: ©Science China Press

Abstract:
DNA sequencing seems to be an eternal theme for human due to the desire of ascertaining the nature of life. Professor QIAN Linmao and his group from Tribology Research Institute, Southwest Jiaotong University were working on the optimization of the third-generation sequencing technique based on nanopore. They found that long chain DNA with low salt concentration is more conducive to the nanopore sequencing process. Their work, entitled "Effect of chain length on the conformation and friction behaviour of DNA", was published in SCIENCE CHINA Technological Sciences. 2013, Vol 56(12).

The gene sequencing that everyone can afford in future

China | Posted on December 6th, 2013

When Watson and Crick proposed the double helix structure of DNA in 1953, a significant era was opened for a new stage of the life sciences. Since the detection of DNA sequence can help people prevent and treat many genetic diseases, DNA sequencing technology has been one of the important means of modern biological research. The first-generation sequencing was proposed in the 1970s, by which it took more than 10 years and $1 billion to complete the Human Genome Project. In 2005, the second-generation sequencing technology was developed, by which the sequencing period for individual human genome could be reduced to be only 1 week. In recent years, the third-generation sequencing based on nanopore has been widespread concerned as a potential candidate for achieving the ''$1000 genome'' goal set by the US National Institutes of Health.

In a typical nanopore sequencing process, when a DNA molecule passes through a nanopore, a characteristic blockade ionic current can be detected to determine the information of the DNA molecule (shown in the image). It exhibits many advantages, such as accurate, rapid, low-cost and so on. Nevertheless, there are several challenges in nanopore sequencing. For example, the coiled conformation of a DNA molecule makes it difficult for one end of a DNA molecule to reach into a nanopore, and the high translocation speed made it extremely difficult to distinguish the desired current signal. Therefore, it is essential to slove the problem and improve the nanopore sequencing technique.

In August 2013, Professor Qian and his team reported that, low salt concentration is more conducive to the sequencing process, since it can not only make DNA molecules easier to reach into nanopore through extended conformation, but also reduce the passage rate by high friction between DNA molecule and the wall of nanopore. In the present study, the team confirmed that, with the increase of chain length, the DNA molecule became more extended, which can make DNA molecules reach into and pass through the nanopore readily. Additionally, the effect of chain length on the friction of DNA was insignificant under low normal load which indicated that the nanopore sequencing technique was not restricted by the chain length of DNA molecules. In summary, long chain DNA with low salt concentration is more conducive to the third-generation sequencing technique based on nanopore and the expectation of longer reads could be realized in the future.

"In the future, everyone could afford to carry out their own gene sequencing," Qian says, "Based on our results, the nanopore sequencing technique is not restricted by the chain length of DNA molecules. It may improve the efficiency of sequencing, which means that the cost of gene sequencing could be further reduced."

On the strength of these findings, the researchers are beginning an extensive project to optimize the parameters in the third-generation sequencing. The results will benefit the development of third-generation sequencing, but the benefits will likely extend further, Qian says.

"There is much more beyond optimization of the nanopore sequencing," Qian says, "A lot of basic research needs to be done and we will work on it."

####

About Science China Press
Science China Press Co., Ltd. (SCP) is a scientific journal publishing company of the Chinese Academy of Sciences (CAS). For 50 years, SCP takes its mission to present to the world the best achievements by Chinese scientists on various fields of natural sciences researches.

For more information, please click here

Contacts:
YAN Bei

86-106-400-8316

Corresponding Author:
QIAN Linmao

Copyright © Science China Press

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

See the article: Wang M, Cui S X, Yun B J, Qian L M. Effect of chain length on the conformation and friction behaviour of DNA. SCI CHINA Tech Sci, 2013 Vol. 56 (12): 2927-2933:

Related News Press

News and information

Researchers find the 'key' to quantum network solution May 25th, 2015

One step closer to a single-molecule device: Columbia Engineering researchers first to create a single-molecule diode -- the ultimate in miniaturization for electronic devices -- with potential for real-world applications May 25th, 2015

DNA Double Helix Does Double Duty in Assembling Arrays of Nanoparticles: Synthetic pieces of biological molecule form framework and glue for making nanoparticle clusters and arrays May 25th, 2015

Engineering Phase Changes in Nanoparticle Arrays: Scientists alter attractive and repulsive forces between DNA-linked particles to make dynamic, phase-shifting forms of nanomaterials May 25th, 2015

Nanomedicine

DNA Double Helix Does Double Duty in Assembling Arrays of Nanoparticles: Synthetic pieces of biological molecule form framework and glue for making nanoparticle clusters and arrays May 25th, 2015

Nanostructures Increase Corrosion Resistance in Metallic Body Implants May 24th, 2015

Iranian Scientists Use Magnetic Field to Transfer Anticancer Drug to Tumor Tissue May 24th, 2015

New Antibacterial Wound Dressing in Iran Can Display Replacement Time May 22nd, 2015

Discoveries

Researchers find the 'key' to quantum network solution May 25th, 2015

One step closer to a single-molecule device: Columbia Engineering researchers first to create a single-molecule diode -- the ultimate in miniaturization for electronic devices -- with potential for real-world applications May 25th, 2015

DNA Double Helix Does Double Duty in Assembling Arrays of Nanoparticles: Synthetic pieces of biological molecule form framework and glue for making nanoparticle clusters and arrays May 25th, 2015

Engineering Phase Changes in Nanoparticle Arrays: Scientists alter attractive and repulsive forces between DNA-linked particles to make dynamic, phase-shifting forms of nanomaterials May 25th, 2015

Announcements

Researchers find the 'key' to quantum network solution May 25th, 2015

One step closer to a single-molecule device: Columbia Engineering researchers first to create a single-molecule diode -- the ultimate in miniaturization for electronic devices -- with potential for real-world applications May 25th, 2015

DNA Double Helix Does Double Duty in Assembling Arrays of Nanoparticles: Synthetic pieces of biological molecule form framework and glue for making nanoparticle clusters and arrays May 25th, 2015

Engineering Phase Changes in Nanoparticle Arrays: Scientists alter attractive and repulsive forces between DNA-linked particles to make dynamic, phase-shifting forms of nanomaterials May 25th, 2015

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Researchers find the 'key' to quantum network solution May 25th, 2015

One step closer to a single-molecule device: Columbia Engineering researchers first to create a single-molecule diode -- the ultimate in miniaturization for electronic devices -- with potential for real-world applications May 25th, 2015

DNA Double Helix Does Double Duty in Assembling Arrays of Nanoparticles: Synthetic pieces of biological molecule form framework and glue for making nanoparticle clusters and arrays May 25th, 2015

Engineering Phase Changes in Nanoparticle Arrays: Scientists alter attractive and repulsive forces between DNA-linked particles to make dynamic, phase-shifting forms of nanomaterials May 25th, 2015

Nanobiotechnology

DNA Double Helix Does Double Duty in Assembling Arrays of Nanoparticles: Synthetic pieces of biological molecule form framework and glue for making nanoparticle clusters and arrays May 25th, 2015

Engineering Phase Changes in Nanoparticle Arrays: Scientists alter attractive and repulsive forces between DNA-linked particles to make dynamic, phase-shifting forms of nanomaterials May 25th, 2015

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Supercomputer unlocks secrets of plant cells to pave the way for more resilient crops: IBM partners with University of Melbourne and UQ May 21st, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project