Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Invisible Printed Electronics Using Carbon Nanotubes

Abstract:
Researchers at the UCLA incubator startup, Aneeve Nanotechnologies, have demonstrated the first fully printed and invisible electronics using carbon nanotubes. Such a demonstration aims to propel the momentum in innovating invisible (transparent) displays used for google goggles, invisible window displays, transparent smarphones and wearable electronics.

Invisible Printed Electronics Using Carbon Nanotubes

Los Angeles, CA | Posted on November 14th, 2013

Research built the electronics made of thin film transistors (TFT) to be totally invisible to the naked eye by incorporating devices made solely using carbon nanotubes (CNT) materials that are inherently transparent. In addition to being printable, CNT materials are able to operate at faster processing data speeds and CNT technology has the potential to lessen energy consumption (and waste). Furthermore these materials have outstanding mechanical, electrical and thermal properties that make them an alluring material to electronic manufacturers.

"This is the first practical demonstration of carbon nanotube-based printed circuits for transparent applications," said Kos Galatsis, an associate adjunct professor of materials science at UCLA Engineering and a co-founder of Aneeve. "We have demonstrated carbon nanotubes' viable candidacy as a competing technology alongside amorphous silicon and metal-oxide semiconductor solution as a low-cost and scalable option, but with more bells and whistles, such as room temperature fabrication and transparency."

This distinct process utilizes an ink-jet printing method that eliminates the need for expensive vacuum equipment and lends itself to scalable manufacturing and roll-to-roll printing. The team solved many material integration problems that enabled transistors to be fully printed using nano-based ink solutions.

The new work is described in a paper published in the Applied Physics Letters journal, co-authored by Aneeve scientists, Farzam Sajed and Christopher Rutherglen.

Journal Reference: Sajed, Farzam, and Christopher Rutherglen. "All-printed and transparent single walled carbon nanotube thin film transistor devices."Applied Physics Letters103.14 (2013): 143303-143303.

####

For more information, please click here

Contacts:
Aneeve Nanotechnologies LLC
UCLA California NanoSystems Institute
570 Westwood Plaza, Suite 6532
Building 114, MC 722710
Los Angeles, CA 90095-7277
Phone (310) 874 3024
Fax (310) 825 8621

Copyright © Aneeve Nanotechnologies

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Superheroes are real: Ultrasensitive nonlinear metamaterials for data transfer June 25th, 2016

Russian physicists create a high-precision 'quantum ruler': Physicists have devised a method for creating a special quantum entangled state June 25th, 2016

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

Ultrathin, flat lens resolves chirality and color: Multifunctional lens could replace bulky, expensive machines June 25th, 2016

Flexible Electronics

GraphExeter illuminates bright new future for flexible lighting devices June 23rd, 2016

New nanomaterial offers promise in bendable, wearable electronic devices: Electroplated polymer makes transparent, highly conductive, ultrathin film June 13th, 2016

Graphene-based transparent electrodes for highly efficient flexible OLEDS: A Korean research team developed an ideal electrode structure composed of graphene and layers of titanium dioxide and conducting polymers, resulting in highly flexible and efficient OLEDs June 5th, 2016

Display technology/LEDs/SS Lighting/OLEDs

GraphExeter illuminates bright new future for flexible lighting devices June 23rd, 2016

New nanomaterial offers promise in bendable, wearable electronic devices: Electroplated polymer makes transparent, highly conductive, ultrathin film June 13th, 2016

Chip Technology

GraphExeter illuminates bright new future for flexible lighting devices June 23rd, 2016

Soft decoupling of organic molecules on metal June 23rd, 2016

Particle zoo in a quantum computer: First experimental quantum simulation of particle physics phenomena June 23rd, 2016

Nanometrics to Participate in the 8th Annual CEO Investor Summit: Investor Event Held Concurrently with SEMICON West 2016 in San Francisco June 22nd, 2016

Nanotubes/Buckyballs/Fullerenes

Nanotubes' 'stuffing' as is: A scientist from the Lomonosov Moscow State University studied the types of carbon nanotubes' 'stuffing' June 2nd, 2016

Programmable materials find strength in molecular repetition May 23rd, 2016

Nanotubes are beacons in cancer-imaging technique: Rice University researchers use spectral triangulation to pinpoint location of tumors May 21st, 2016

Unveiling the electron's motion in a carbon nanocoil: Development of a precise resistivity measurement system for quasi-one-dimensional nanomaterials using a focused ion beam May 16th, 2016

Discoveries

Superheroes are real: Ultrasensitive nonlinear metamaterials for data transfer June 25th, 2016

Russian physicists create a high-precision 'quantum ruler': Physicists have devised a method for creating a special quantum entangled state June 25th, 2016

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

Ultrathin, flat lens resolves chirality and color: Multifunctional lens could replace bulky, expensive machines June 25th, 2016

Announcements

Superheroes are real: Ultrasensitive nonlinear metamaterials for data transfer June 25th, 2016

Russian physicists create a high-precision 'quantum ruler': Physicists have devised a method for creating a special quantum entangled state June 25th, 2016

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

Ultrathin, flat lens resolves chirality and color: Multifunctional lens could replace bulky, expensive machines June 25th, 2016

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Superheroes are real: Ultrasensitive nonlinear metamaterials for data transfer June 25th, 2016

Russian physicists create a high-precision 'quantum ruler': Physicists have devised a method for creating a special quantum entangled state June 25th, 2016

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

Ultrathin, flat lens resolves chirality and color: Multifunctional lens could replace bulky, expensive machines June 25th, 2016

Printing/Lithography/Inkjet/Inks

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

Perovskite solar cells surpass 20 percent efficiency: EPFL researchers are pushing the limits of perovskite solar cell performance by exploring the best way to grow these crystals June 13th, 2016

'On-the-fly' 3-D print system prints what you design, as you design it June 1st, 2016

Physicists create first metamaterial with rewritable magnetic ordering May 23rd, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic