Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Laser diodes versus LEDs

Abstract:
Solid-state lighting based on light-emitting diodes (LEDs) is the most efficient source of high color quality white light. Nevertheless, they show significant performance limitations such as the "efficiency droop". Blue laser diodes operated in stimulated emission offer a potential alternative.

Laser diodes versus LEDs

Albuquerque, NM | Posted on November 8th, 2013

Solid-state lighting (SSL) has recently become competitive with conventional light sources and is now the most efficient source of high color quality white light ever created. At the heart of SSL is the light-emitting diode (LED). The current standard architecture for SSL is the phosphor-converted light-emitting diode (PCLED) in which high-brightness InGaN blue LEDs are combined with one or more wavelength-downconverting phosphors to produce composite white light of virtually any color temperature and color rendering quality. Despite this success, blue LEDs still have significant performance limitations, especially a nonthermal drop in efficiency with increasing input power density called "efficiency droop" which limits operation to relatively low input power densities, contrary to the desire to produce more photons per unit area of the LED chip and to thereby make SSL more affordable.

An alternative could be a blue laser diode (LD). LDs can in principle have high efficiencies at much higher input power densities than LEDs. Above the lasing threshold, parasitic nonradiative recombination processes, including those likely responsible for efficiency droop in LEDs, are clamped at their rates at lasing threshold. Indeed, at high input power densities state-of-the-art, high-power, blue, edge-emitting LDs already have reasonably high (30%) power-conversion efficiencies, with the promise someday of even higher efficiencies. A team from Sandia National Laboratories, Albuquerque (NM, USA) and Corning Incorporated, Corning (NY, USA) compared LEDs and LDs and discuss their economics for practical SSL.

The scientists refer to the tremendous progress made in both device types, with current state-of-the-art power-conversion efficiencies (PCEs) of 70% for LEDs and 30% for LDs. The input power densities, at which these PCEs peak, are vastly different at about 10 W/cm2 for LEDs and 25 kW/cm2 for LDs. As the areal chip cost necessary for economical lighting scales as input power density, areal chip cost can be much higher for LDs than for LEDs. The authors conclude that it appears to be much more challenging to achieve areal chip costs low enough for LEDs than for LDs to be operated at the input power densities at which their PCEs peak.

Yet, as heat-sink-limited single-chip white-light output scales inversely as input power density, heat-sink-limited single-chip white-light output can be much higher for LEDs than for LDs. A white-light output high enough for practical illumination applications should be more challenging to achieve for LDs than for LEDs.

The researchers conclude, that for both, LEDs and LDs, the solution will be to shift the input power density at which their PCEs peak. Whereas LEDs need to shift to higher input power density to offset higher areal chip cost, LDs need to shift to lower input power density to enable higher white-light output. In other words, both LEDs and LDs will be made more practical and economical if they can move into and fill the "valley of droop". (Text contributed by K. Maedefessel-Herrmann)

####

About Laser & Photonics Reviews
Laser & Photonics Reviews is an international journal which covers the current range of laser physics and photonics, both theoretical and experimental, from recent research to specific developments and novel applications. The journal publishes Review Articles, Original Papers and Letters. Latest Journal Impact Factor (2012): 7.976 (ISI Journal Citation Reports 2012).

For more information, please click here

Contacts:


Wiley-VCH Verlag GmbH & Co. KGaA
Rotherstrasse 21
10245 Berlin
Germany
www.wiley.com
T +49 (0)30 47 031 321
F +49 (0)30 47 031 399

www.lpr-journal.org
www.wileyonlinelibrary.com

Copyright © Wiley-VCH Verlag GmbH & Co. KGaA

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

See the original publication: Jonathan J. Wierer Jr., Jeffrey Y. Tsao, Dmitry S. Sizov, Comparison between blue lasers and light-emitting diodes for future solid-state lighting, Laser Photonics Rev., 7:6, 963-993 (2013); DOI http://dx.doi.org/10.1002/lpor.201300048:

Related News Press

News and information

GLOBALFOUNDRIES Announces Availability of 45nm RF SOI to Advance 5G Mobile Communications: Optimized RF features deliver high-performance solutions for mmWave beam forming applications in 5G smartphones and base stations February 22nd, 2017

EmTech Asia breaks new barriers with potential applications of space exploration with NASA and MIT February 22nd, 2017

JPK selects compact tensile stage from Deben for their NanoWizardŽ AFM platform to broaden capabilities for materials characterisation February 22nd, 2017

Molecular phenomenon discovered by advanced NMR facility: Cutting edge technology has shown a molecule self-assembling into different forms when passing between solution state to solid state, and back again - a curious phenomenon in science - says research by the University of Wa February 22nd, 2017

Display technology/LEDs/SS Lighting/OLEDs

Research opens door to smaller, cheaper, more agile communications tech February 16th, 2017

Dual-function nanorod LEDs could make multifunctional displays February 11th, 2017

1,000 times more efficient nano-LED opens door to faster microchips February 5th, 2017

Leti Presents First Results in LED Pixelization & Record Resolution for Micro-Displays at Photonics West February 3rd, 2017

Discoveries

Molecular phenomenon discovered by advanced NMR facility: Cutting edge technology has shown a molecule self-assembling into different forms when passing between solution state to solid state, and back again - a curious phenomenon in science - says research by the University of Wa February 22nd, 2017

Tiny nanoclusters could solve big problems for lithium-ion batteries February 21st, 2017

Oxford Instruments announces Dr Brad Ramshaw of Cornell University, as winner of the 2017 Lee Osheroff Richardson Science Prize February 20th, 2017

Breakthrough with a chain of gold atoms: In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport February 20th, 2017

Announcements

GLOBALFOUNDRIES Announces Availability of 45nm RF SOI to Advance 5G Mobile Communications: Optimized RF features deliver high-performance solutions for mmWave beam forming applications in 5G smartphones and base stations February 22nd, 2017

EmTech Asia breaks new barriers with potential applications of space exploration with NASA and MIT February 22nd, 2017

JPK selects compact tensile stage from Deben for their NanoWizardŽ AFM platform to broaden capabilities for materials characterisation February 22nd, 2017

Molecular phenomenon discovered by advanced NMR facility: Cutting edge technology has shown a molecule self-assembling into different forms when passing between solution state to solid state, and back again - a curious phenomenon in science - says research by the University of Wa February 22nd, 2017

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Molecular phenomenon discovered by advanced NMR facility: Cutting edge technology has shown a molecule self-assembling into different forms when passing between solution state to solid state, and back again - a curious phenomenon in science - says research by the University of Wa February 22nd, 2017

Tiny nanoclusters could solve big problems for lithium-ion batteries February 21st, 2017

Breakthrough with a chain of gold atoms: In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport February 20th, 2017

'Lossless' metamaterial could boost efficiency of lasers and other light-based devices February 20th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project