Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Laser diodes versus LEDs

Abstract:
Solid-state lighting based on light-emitting diodes (LEDs) is the most efficient source of high color quality white light. Nevertheless, they show significant performance limitations such as the "efficiency droop". Blue laser diodes operated in stimulated emission offer a potential alternative.

Laser diodes versus LEDs

Albuquerque, NM | Posted on November 8th, 2013

Solid-state lighting (SSL) has recently become competitive with conventional light sources and is now the most efficient source of high color quality white light ever created. At the heart of SSL is the light-emitting diode (LED). The current standard architecture for SSL is the phosphor-converted light-emitting diode (PCLED) in which high-brightness InGaN blue LEDs are combined with one or more wavelength-downconverting phosphors to produce composite white light of virtually any color temperature and color rendering quality. Despite this success, blue LEDs still have significant performance limitations, especially a nonthermal drop in efficiency with increasing input power density called "efficiency droop" which limits operation to relatively low input power densities, contrary to the desire to produce more photons per unit area of the LED chip and to thereby make SSL more affordable.

An alternative could be a blue laser diode (LD). LDs can in principle have high efficiencies at much higher input power densities than LEDs. Above the lasing threshold, parasitic nonradiative recombination processes, including those likely responsible for efficiency droop in LEDs, are clamped at their rates at lasing threshold. Indeed, at high input power densities state-of-the-art, high-power, blue, edge-emitting LDs already have reasonably high (30%) power-conversion efficiencies, with the promise someday of even higher efficiencies. A team from Sandia National Laboratories, Albuquerque (NM, USA) and Corning Incorporated, Corning (NY, USA) compared LEDs and LDs and discuss their economics for practical SSL.

The scientists refer to the tremendous progress made in both device types, with current state-of-the-art power-conversion efficiencies (PCEs) of 70% for LEDs and 30% for LDs. The input power densities, at which these PCEs peak, are vastly different at about 10 W/cm2 for LEDs and 25 kW/cm2 for LDs. As the areal chip cost necessary for economical lighting scales as input power density, areal chip cost can be much higher for LDs than for LEDs. The authors conclude that it appears to be much more challenging to achieve areal chip costs low enough for LEDs than for LDs to be operated at the input power densities at which their PCEs peak.

Yet, as heat-sink-limited single-chip white-light output scales inversely as input power density, heat-sink-limited single-chip white-light output can be much higher for LEDs than for LDs. A white-light output high enough for practical illumination applications should be more challenging to achieve for LDs than for LEDs.

The researchers conclude, that for both, LEDs and LDs, the solution will be to shift the input power density at which their PCEs peak. Whereas LEDs need to shift to higher input power density to offset higher areal chip cost, LDs need to shift to lower input power density to enable higher white-light output. In other words, both LEDs and LDs will be made more practical and economical if they can move into and fill the "valley of droop". (Text contributed by K. Maedefessel-Herrmann)

####

About Laser & Photonics Reviews
Laser & Photonics Reviews is an international journal which covers the current range of laser physics and photonics, both theoretical and experimental, from recent research to specific developments and novel applications. The journal publishes Review Articles, Original Papers and Letters. Latest Journal Impact Factor (2012): 7.976 (ISI Journal Citation Reports 2012).

For more information, please click here

Contacts:


Wiley-VCH Verlag GmbH & Co. KGaA
Rotherstrasse 21
10245 Berlin
Germany
www.wiley.com
T +49 (0)30 47 031 321
F +49 (0)30 47 031 399

www.lpr-journal.org
www.wileyonlinelibrary.com

Copyright © Wiley-VCH Verlag GmbH & Co. KGaA

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

See the original publication: Jonathan J. Wierer Jr., Jeffrey Y. Tsao, Dmitry S. Sizov, Comparison between blue lasers and light-emitting diodes for future solid-state lighting, Laser Photonics Rev., 7:6, 963-993 (2013); DOI http://dx.doi.org/10.1002/lpor.201300048:

Related News Press

News and information

MIG Takes a Roll-Up-Your-Sleeves Approach with Revamped MEMS/Sensors Technical Event -- MIG welcomes technologists to MEMS Technical Congress, emphasizes working groups and breakout sessions on emerging MEMS & sensors, tech transfer and integration March 6th, 2015

Phenom-World announces the Phenom XL, world’s fastest desktop SEM to handle large samples March 6th, 2015

Air Bearing Stage / Systems Introduced by PI at Photonics West March 6th, 2015

Consistent Scalable Functionalised Graphene Capacity March 5th, 2015

Display technology/LEDs/SS Lighting/OLEDs

Breakthrough in OLED technology March 2nd, 2015

New nanowire structure absorbs light efficiently: Dual-type nanowire arrays can be used in applications such as LEDs and solar cells February 25th, 2015

QD Vision Named Edison Award Finalist for Innovative Color IQ™ Quantum Dot Technology February 23rd, 2015

JunPus launched high-performance thermal grease for LED February 20th, 2015

Discoveries

Enhanced Graphene Components for Next Generation Racing Yacht March 5th, 2015

American Chemical Society Presidential Symposia: nanoscience, international chemistry March 5th, 2015

Strength in numbers: Researchers develop the first-ever quantum device that detects and corrects its own errors March 4th, 2015

New research could lead to more efficient electrical energy storage March 4th, 2015

Announcements

MIG Takes a Roll-Up-Your-Sleeves Approach with Revamped MEMS/Sensors Technical Event -- MIG welcomes technologists to MEMS Technical Congress, emphasizes working groups and breakout sessions on emerging MEMS & sensors, tech transfer and integration March 6th, 2015

Phenom-World announces the Phenom XL, world’s fastest desktop SEM to handle large samples March 6th, 2015

Air Bearing Stage / Systems Introduced by PI at Photonics West March 6th, 2015

Get ready for NanoDays! March 5th, 2015

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Strength in numbers: Researchers develop the first-ever quantum device that detects and corrects its own errors March 4th, 2015

Energy-generating cloth could replace batteries in wearable devices March 4th, 2015

Experiment and theory unite at last in debate over microbial nanowires: New model and experiments settle debate over metallic-like conductivity of microbial nanowires in bacterium March 4th, 2015

Magnetic vortices in nanodisks reveal information: Researchers from Dresden and Jülich use microwaves to read out information from smallest storage devices March 4th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE