Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

android tablet pc

Home > Press > Build-A-Nanoparticle

An engineered Silicon-Silver  nanoparticle of ~10 nanometers in size.
An engineered Silicon-Silver nanoparticle of ~10 nanometers in size.

Nanoparticles, which range from 1-100 nanometers in size, are roughly the same size as biomolecules such as proteins, antibodies, and membrane receptors. Because of this size similarity, nanoparticles can mimic biomolecules and therefore have a huge potential for application in the biomedical field. In a paper published in Scientific Reports on October 30th, a group of researchers from the OIST Nanoparticles by Design Unit lead by Prof. Mukhles Sowwan announced that they have succeeded in designing and creating multicomponent nanoparticles with controlled shape and structure.


Tancha, Japan | Posted on November 7th, 2013

Multicomponent nanoparticles, which are nanoparticles containing two or more materials, are even more powerful since they bring together the unique properties of each material to make a single nanoparticle with various functionalities. For example, a single-component nanoparticle may be able to transport drugs but may not be able to differentiate between healthy and diseased cells. In contrast, a multicomponent nanoparticle could also include characteristics of another material that can distinguish between healthy and diseased cells to make drug delivery more efficient.

The OIST researchers produced Silicon-Silver nanoparticles using advanced equipment custom-designed specifically for producing multicomponent nanoparticles. Silicon and Silver are an interesting combination because each element has different optical properties that give out different signals. A single nanoparticle simultaneously sending out multiple signals is attractive for bioimaging and biosensoring: for example, Silver would show whether a certain reaction is happening or not, while Silicon could give out information about where the nanoparticles are located.

Especially exciting is that Prof. Sowwan and his team that includes scientists from Ireland, Greece, India, United Kingdom, Peru, South Korea, Palestine, France, Spain, and Japan, can customize not only the shape and structure of the nanoparticles but also the nanoparticles' characteristics. Engineering a particle that is 10 million times smaller than the size of a football is not easy: although nanoparticles like these have been made elsewhere in the past using different methods, they lack the level of control and purity offered at the Nanoparticles by Design Unit. With this technique, the size, structure, and crystallinity - the orderliness of atoms - of each nanoparticle can be customized. In this particular study, Sliver was used to control the crystallinity of Silicon. By controlling the crystallinity, optical, electrical, and chemical properties of the nanoparticle can be fine-tuned. "This is engineering. We control how we want the nanoparticles to be," said Prof. Sowwan.


About Okinawa Institute of Science and Technology - OIST
The Okinawa Institute of Science and Technology is an interdisciplinary graduate school offering a 5-year PhD program in Science. Over half of the faculty and students are recruited from outside Japan, and all education and research is conducted entirely in English. OIST researchers are conducting multi-disciplinary research in five major areas: Neuroscience, Molecular Sciences, Environmental and Ecological Sciences, Physical Sciences, and Mathematical Computational Sciences. In the six years leading up to graduate school accreditation, OIST received recognition for doing original research and sponsoring innovative international workshops and courses.

The graduate school accepts 20 students per year, creating a very low student to instructor ratio. Students also receive support for living costs, health care, housing, childcare, and other needs that would otherwise distract them from the science. Balancing lectures and lab work, the doctoral program places students in well-funded labs where they work side-by-side with top researchers on state-of-the-art equipment. Frequent visits from internationally-known scientists further enrich the program and provide opportunities for collaboration and exchange. By the time they graduate, students have accumulated not only abstract knowledge and practical skills but also the kind of professional connections necessary to launch their careers as world-class researchers.

For more information, please click here

Neil Calder

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Full bibliographic information

Related News Press

News and information

Scientists Capture Ultrafast Snapshots of Light-Driven Superconductivity: X-rays reveal how rapidly vanishing 'charge stripes' may be behind laser-induced high-temperature superconductivity April 16th, 2014

'Life Redesigned: The Emergence of Synthetic Biology' Lecture at Brookhaven Lab on Wednesday, April 30: Biomedical Engineer James Collins to Speak for BSA Distinguished Lecture Series April 16th, 2014

ECHA Planning Workshop on Regulatory Challenges in the Risk Assessment of Nanomaterials April 16th, 2014

Lumerical files a provisional patent that extends the standard eigenmode expansion propagation technique to better address waveguide component design. Lumericalís EME propagation tool will address a wide set of waveguide applications in silicon photonics and integrated optics April 16th, 2014


Catching the (Invisible) Wave: UC Santa Barbara researchers create a unique semiconductor that manipulates light in the invisible infrared/terahertz range, paving the way for new and enhanced applications April 11th, 2014

Agilent Technologies Announces Fourth NanoMeasure Scientific Symposium: National Center for Nanoscience and Technology in Beijing to Host Event April 10th, 2014

Hawk Trade Secures Funding and Development Capital for Nanotec Industries: Nanotec Industries successfully negotiates funding for development of nano-sized treatment and imaging delivery device facility through Hawk Trade April 3rd, 2014

New JEOL-Nikon MiXcroscopy Correlative Imaging Solution March 27th, 2014

Molecular Nanotechnology

Roomy cages built from DNA: Self-assembling cages are the largest standalone 3-D DNA structures yet, and could one day deliver drugs, or house tiny bioreactors or photonic devices March 13th, 2014

Advantages emerge in using nanostructured material in the forging process of mechanical components February 28th, 2014

Stirring-up atomtronics in a quantum circuit: What's so 'super' about this superfluid February 12th, 2014

Nanomotors are controlled, for the first time, inside living cells February 10th, 2014


UT Arlington physicist creates new nanoparticle for cancer therapy April 16th, 2014

Nanobiotix Appoints Thierry Otin as Head of Manufacturing and Supply April 15th, 2014

PAM-XIAMEN Offers UV LED wafer April 15th, 2014

Nanocrystalline cellulose modified into an efficient viral inhibitor April 15th, 2014


Biologists Develop Nanosensors to Visualize Movements and Distribution of Plant Stress Hormone April 15th, 2014

LetiDays Grenoble to Present Multiple Perspectives on Development, Challenges and Markets for the IoT April 14th, 2014

In latest generation of tiny biosensors, size isn't everything: UCLA researchers overturn conventional wisdom on nanowire-based diagnostic devices April 11th, 2014

Nanotech Business Review 2013-2014 April 9th, 2014


Scientists Capture Ultrafast Snapshots of Light-Driven Superconductivity: X-rays reveal how rapidly vanishing 'charge stripes' may be behind laser-induced high-temperature superconductivity April 16th, 2014

Scientists observe quantum superconductor-metal transition and superconducting glass: A team including MIPT physicist observed quantum superconductor-metal transition and superconducting glass April 16th, 2014

UT Arlington physicist creates new nanoparticle for cancer therapy April 16th, 2014

Targeting cancer with a triple threat: MIT chemists design nanoparticles that can deliver three cancer drugs at a time April 15th, 2014


UT Arlington physicist creates new nanoparticle for cancer therapy April 16th, 2014

Relieving electric vehicle range anxiety with improved batteries: Lithium-sulfur batteries last longer with nanomaterial-packed cathode April 16th, 2014

Aerotech X-Y ball-screw stage for economical high performance Planar positioning April 16th, 2014

Energy Research Facility Construction Project at Brookhaven Lab Wins U.S. Energy Secretary's Achievement Award April 16th, 2014

The latest news from around the world, FREE

  Premium Products
Only the news you want to read!
 Learn More
University Technology Transfer & Patents
 Learn More
Full-service, expert consulting
 Learn More

Nanotechnology Now Featured Books


The Hunger Project

© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE