Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Perfect faults: A self-correcting crystal may unleash the next generation of advanced communications

Not a brick wall. Electron microscope image of a cross section of the newly characterized tunable microwave dielectric clearly shows the thick layers of strontium titanate "bricks" separated by thin "mortar lines" of strontium oxide that help promote the largely defect-free growth of the bricks.

Credit: TEM image courtesy David Mueller. Color added for clarity by Nathan Orloff.
Not a brick wall. Electron microscope image of a cross section of the newly characterized tunable microwave dielectric clearly shows the thick layers of strontium titanate "bricks" separated by thin "mortar lines" of strontium oxide that help promote the largely defect-free growth of the bricks.

Credit: TEM image courtesy David Mueller. Color added for clarity by Nathan Orloff.

Abstract:
Researchers from the National Institute of Standards and Technology (NIST) have joined with an international team to engineer and measure a potentially important new class of nanostructured materials for microwave and advanced communication devices. Based on NIST's measurements, the new materials—a family of multilayered crystalline sandwiches—might enable a whole new class of compact, high-performance, high-efficiency components for devices such as cellular phones.*

Perfect faults: A self-correcting crystal may unleash the next generation of advanced communications

Gaithersburg, MD | Posted on November 6th, 2013

"These materials are an excellent example of what the Materials Genome Initiative refers to as 'materials-by-design'," says NIST physicist James Booth, one of the lead researchers. "Materials science is getting better and better at engineering complex structures at an atomic scale to create materials with previously unheard-of properties."

The new multilayer crystals are so-called "tunable dielectrics," the heart of electronic devices that, for example, enable cell phones to tune to a precise frequency, picking a unique signal out of the welter of possible ones.

Tunable dielectrics that work well in the microwave range and beyond—modern communications applications typically use frequencies around a few gigahertz—have been hard to make, according to NIST materials scientist Nathan Orloff. "People have created tunable microwave dielectrics for decades, but they've always used up way too much power." These new materials work well up to 100 GHz, opening the door for the next generation of devices for advanced communications.

Modern cellphone dielectrics use materials that suffer from misplaced or missing atoms called "defects" within their crystal structure, which interfere with the dielectric properties and lead to power loss. One major feature of the new materials, says Orloff, is that they self-correct, reducing the effect of defects in the part of the crystal where it counts. "We refer to this material as having 'perfect faults'," he says. "When it's being grown, one portion accommodates defects without affecting the good parts of the crystal. It's able to correct itself and create perfect dielectric bricks that result in the rare combination of high tuning and low loss."

The new material has layers of strontium oxide, believed to be responsible for the self-correcting feature, separating a variable number of layers of strontium titanate. Strontium titanate on its own is normally a pretty stable dielectric—not really tunable at all—but another bit of nanostructure wizardry solves that. The sandwich layers are grown as a thin crystalline film on top of a substrate material with a mismatched crystal spacing that produces strain within the strontium titanate structure that makes it a less stable dielectric—but one that can be tuned. "It's like putting a queen-sized sheet on a king-sized bed," says Orloff. "The combination of strain with defect control leads to the unique electronic properties."

One key discovery by the research team was that, in addition to adding strain to the crystal sandwich, adding additional layers of strontium titanate in between the strontium oxide layers increased the room-temperature "tunability" performance of the structure, providing a new mechanism to control the material response. The material they reported on recently in the journal Nature has six layers of strontium titanate between each strontium oxide layer.

The new sandwich material performs so well as a tunable dielectric, over such a broad range of frequencies, that the NIST team led by Booth had to develop a new measurement technique—an array of test structures fabricated on top of the test film—just to measure its electronic characteristics. "We were able to characterize the performance of these materials as a function of frequency running from 10 hertz all the way up to 125 gigahertz. That's the equivalent of measuring wavelengths from kilometers down to microns all with the same experimental set-up," says Orloff, adding, "This material has a much lower loss and a much higher tunability for a given applied field then any material that we have seen."

An international team of researchers contributed to the recent paper, representing, in addition to NIST, Cornell University, the University of Maryland, Pennsylvania State University, the Institute of Physics ASCR (Czech Republic), Universitat Politècnica de Catalunya (Spain), the Kavli Institute at Cornell for Nanoscale Science, Oak Ridge National Laboratory, the Leibniz Institute for Crystal Growth (Germany), The University of Texas at Austin and Temple University.

*C-H Lee, N.D. Orloff, T. Birol, Y. Zhu, V. Goian, E. Rocas, R. Haislmaier, E. Vlahos, J.A. Mundy, L.F. Kourkoutis, Y. Nie, M.D. Biegalski, J. Zhang, M. Bernhagen, N.A. Benedek, Y. Kim, J.D. Brock, R.Uecker, X.X. Xi, V. Gopalan, D. Nuzhnyy, S. Kamba, D.A. Muller, I. Takeuchi, J.C. Booth, C.J. Fennie and D.G. Schlom. Exploiting dimensionality and defect mitigation to create tunable microwave dielectrics. Nature, 502, 532-536, Oct. 24, 2013. doi:10.1038/nature12582.

####

About National Institute of Standards and Technology (NIST)
The National Institute of Standards and Technology (NIST) is an agency of the U.S. Department of Commerce.

For more information, please click here

Contacts:
Michael Baum

301-975-2763

Copyright © National Institute of Standards and Technology (NIST)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

For additional perspective, see the Cornell University news story, "Tunable antenna could end dropped cell phone calls" at:

For more on the MGI at NIST, see:

Related News Press

News and information

Sensor Designed in Iran Able to Remove Formaldehyde Gas from Environment April 27th, 2015

Cacao Seed Extract Used in Production of Catalytic Nanoparticles April 27th, 2015

New ASTM Standards Will Help Educate Present and Future Nanotechnology Workforces April 26th, 2015

Heat makes electrons’ spin in magnetic superconductors April 26th, 2015

Laboratories

ORNL reports method that takes quantum sensing to new level April 23rd, 2015

Scientists Use Nanoscale Building Blocks and DNA 'Glue' to Shape 3D Superlattices: New approach to designing ordered composite materials for possible energy applications April 23rd, 2015

Drexel materials scientists putting a new spin on computing memory April 22nd, 2015

Phonons, arise! Small electric voltage alters conductivity in key materials April 22nd, 2015

Wireless/telecommunications/RF/Antennas

Scientists create invisible objects without metamaterial cloaking April 14th, 2015

A glass fiber that brings light to a standstill: By coupling photons to atoms, light in a glass fiber can be slowed down to the speed of an express train; for a short while it can even be brought to a complete stop April 9th, 2015

New understanding of electromagnetism could enable 'antennas on a chip' April 9th, 2015

Demonstration of 50GHz Ge Waveguide Electro-Absorption Modulator April 2nd, 2015

Govt.-Legislation/Regulation/Funding/Policy

SEFCU, SUNY Poly CNSE Announce Winning Student-Led Teams in the 6th Annual $500,000 New York Business Plan Competition April 25th, 2015

Northwestern scientists develop first liquid nanolaser: Technology could lead to new way of doing 'lab on a chip' medical diagnostics April 25th, 2015

ORNL reports method that takes quantum sensing to new level April 23rd, 2015

Electron spin brings order to high entropy alloys April 23rd, 2015

Chip Technology

Surface matters: Huge reduction of heat conduction observed in flat silicon channels April 23rd, 2015

Drexel materials scientists putting a new spin on computing memory April 22nd, 2015

Printing Silicon on Paper, with Lasers April 21st, 2015

Advances in molecular electronics: Lights on -- molecule on: Researchers from Dresden and Konstanz succeed in light-controlled molecule switching April 20th, 2015

Discoveries

Sensor Designed in Iran Able to Remove Formaldehyde Gas from Environment April 27th, 2015

Cacao Seed Extract Used in Production of Catalytic Nanoparticles April 27th, 2015

Heat makes electrons’ spin in magnetic superconductors April 26th, 2015

SEFCU, SUNY Poly CNSE Announce Winning Student-Led Teams in the 6th Annual $500,000 New York Business Plan Competition April 25th, 2015

Announcements

Sensor Designed in Iran Able to Remove Formaldehyde Gas from Environment April 27th, 2015

Cacao Seed Extract Used in Production of Catalytic Nanoparticles April 27th, 2015

New ASTM Standards Will Help Educate Present and Future Nanotechnology Workforces April 26th, 2015

Heat makes electrons’ spin in magnetic superconductors April 26th, 2015

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Sensor Designed in Iran Able to Remove Formaldehyde Gas from Environment April 27th, 2015

Cacao Seed Extract Used in Production of Catalytic Nanoparticles April 27th, 2015

Heat makes electrons’ spin in magnetic superconductors April 26th, 2015

Northwestern scientists develop first liquid nanolaser: Technology could lead to new way of doing 'lab on a chip' medical diagnostics April 25th, 2015

Research partnerships

Heat makes electrons’ spin in magnetic superconductors April 26th, 2015

Pseudoparticles travel through photoactive material: KIT scientists measure important process in the conversion of light energy -- publication in Nature Communications April 24th, 2015

Electron spin brings order to high entropy alloys April 23rd, 2015

Surface matters: Huge reduction of heat conduction observed in flat silicon channels April 23rd, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project