Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Perfect faults: A self-correcting crystal may unleash the next generation of advanced communications

Not a brick wall. Electron microscope image of a cross section of the newly characterized tunable microwave dielectric clearly shows the thick layers of strontium titanate "bricks" separated by thin "mortar lines" of strontium oxide that help promote the largely defect-free growth of the bricks.

Credit: TEM image courtesy David Mueller. Color added for clarity by Nathan Orloff.
Not a brick wall. Electron microscope image of a cross section of the newly characterized tunable microwave dielectric clearly shows the thick layers of strontium titanate "bricks" separated by thin "mortar lines" of strontium oxide that help promote the largely defect-free growth of the bricks.

Credit: TEM image courtesy David Mueller. Color added for clarity by Nathan Orloff.

Abstract:
Researchers from the National Institute of Standards and Technology (NIST) have joined with an international team to engineer and measure a potentially important new class of nanostructured materials for microwave and advanced communication devices. Based on NIST's measurements, the new materials—a family of multilayered crystalline sandwiches—might enable a whole new class of compact, high-performance, high-efficiency components for devices such as cellular phones.*

Perfect faults: A self-correcting crystal may unleash the next generation of advanced communications

Gaithersburg, MD | Posted on November 6th, 2013

"These materials are an excellent example of what the Materials Genome Initiative refers to as 'materials-by-design'," says NIST physicist James Booth, one of the lead researchers. "Materials science is getting better and better at engineering complex structures at an atomic scale to create materials with previously unheard-of properties."

The new multilayer crystals are so-called "tunable dielectrics," the heart of electronic devices that, for example, enable cell phones to tune to a precise frequency, picking a unique signal out of the welter of possible ones.

Tunable dielectrics that work well in the microwave range and beyond—modern communications applications typically use frequencies around a few gigahertz—have been hard to make, according to NIST materials scientist Nathan Orloff. "People have created tunable microwave dielectrics for decades, but they've always used up way too much power." These new materials work well up to 100 GHz, opening the door for the next generation of devices for advanced communications.

Modern cellphone dielectrics use materials that suffer from misplaced or missing atoms called "defects" within their crystal structure, which interfere with the dielectric properties and lead to power loss. One major feature of the new materials, says Orloff, is that they self-correct, reducing the effect of defects in the part of the crystal where it counts. "We refer to this material as having 'perfect faults'," he says. "When it's being grown, one portion accommodates defects without affecting the good parts of the crystal. It's able to correct itself and create perfect dielectric bricks that result in the rare combination of high tuning and low loss."

The new material has layers of strontium oxide, believed to be responsible for the self-correcting feature, separating a variable number of layers of strontium titanate. Strontium titanate on its own is normally a pretty stable dielectric—not really tunable at all—but another bit of nanostructure wizardry solves that. The sandwich layers are grown as a thin crystalline film on top of a substrate material with a mismatched crystal spacing that produces strain within the strontium titanate structure that makes it a less stable dielectric—but one that can be tuned. "It's like putting a queen-sized sheet on a king-sized bed," says Orloff. "The combination of strain with defect control leads to the unique electronic properties."

One key discovery by the research team was that, in addition to adding strain to the crystal sandwich, adding additional layers of strontium titanate in between the strontium oxide layers increased the room-temperature "tunability" performance of the structure, providing a new mechanism to control the material response. The material they reported on recently in the journal Nature has six layers of strontium titanate between each strontium oxide layer.

The new sandwich material performs so well as a tunable dielectric, over such a broad range of frequencies, that the NIST team led by Booth had to develop a new measurement technique—an array of test structures fabricated on top of the test film—just to measure its electronic characteristics. "We were able to characterize the performance of these materials as a function of frequency running from 10 hertz all the way up to 125 gigahertz. That's the equivalent of measuring wavelengths from kilometers down to microns all with the same experimental set-up," says Orloff, adding, "This material has a much lower loss and a much higher tunability for a given applied field then any material that we have seen."

An international team of researchers contributed to the recent paper, representing, in addition to NIST, Cornell University, the University of Maryland, Pennsylvania State University, the Institute of Physics ASCR (Czech Republic), Universitat Politècnica de Catalunya (Spain), the Kavli Institute at Cornell for Nanoscale Science, Oak Ridge National Laboratory, the Leibniz Institute for Crystal Growth (Germany), The University of Texas at Austin and Temple University.

*C-H Lee, N.D. Orloff, T. Birol, Y. Zhu, V. Goian, E. Rocas, R. Haislmaier, E. Vlahos, J.A. Mundy, L.F. Kourkoutis, Y. Nie, M.D. Biegalski, J. Zhang, M. Bernhagen, N.A. Benedek, Y. Kim, J.D. Brock, R.Uecker, X.X. Xi, V. Gopalan, D. Nuzhnyy, S. Kamba, D.A. Muller, I. Takeuchi, J.C. Booth, C.J. Fennie and D.G. Schlom. Exploiting dimensionality and defect mitigation to create tunable microwave dielectrics. Nature, 502, 532-536, Oct. 24, 2013. doi:10.1038/nature12582.

####

About National Institute of Standards and Technology (NIST)
The National Institute of Standards and Technology (NIST) is an agency of the U.S. Department of Commerce.

For more information, please click here

Contacts:
Michael Baum

301-975-2763

Copyright © National Institute of Standards and Technology (NIST)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

For additional perspective, see the Cornell University news story, "Tunable antenna could end dropped cell phone calls" at:

For more on the MGI at NIST, see:

Related News Press

News and information

Tiny bubbles provide tremendous propulsion in new microparticles research-Ben-Gurion U. June 21st, 2017

Enhanced photocatalytic activity by Cu2O nanoparticles integrated H2Ti3O7 nanotubes June 21st, 2017

Researchers developed nanoparticle based contrast agent for dual modal imaging of cancer June 21st, 2017

Oxford Instruments congratulates Lancaster University for inaugurating the IsoLab, built for studying quantum systems June 20th, 2017

Laboratories

Alloying materials of different structures offers new tool for controlling properties June 19th, 2017

Development of low-dimensional nanomaterials could revolutionize future technologies June 15th, 2017

X-ray Study Reveals Way to Control Molecular Vibrations that Transmit Heat: Findings open new pathway for "tuning" materials to ease or insulate against the flow of heat, sound, and other forms of energy June 7th, 2017

Scientists Design Molecular System for Artificial Photosynthesis: System is designed to mimic key functions of the photosynthetic center in green plants to convert solar energy into chemical energy stored by hydrogen fuel June 2nd, 2017

Wireless/telecommunications/RF/Antennas/Microwaves

New diode features optically controlled capacitance: Israeli researchers have developed a new optically tunable capacitor with embedded metal nanoparticles, creating a metal-insulator-semiconductor diode that is tunable by illumination. June 8th, 2017

The synchronized dance of skyrmion spins: Computer simulations reveal new insights into skyrmion particles, which are promising for next-generation information storage and processing devices May 30th, 2017

Govt.-Legislation/Regulation/Funding/Policy

Tiny bubbles provide tremendous propulsion in new microparticles research-Ben-Gurion U. June 21st, 2017

Enhanced photocatalytic activity by Cu2O nanoparticles integrated H2Ti3O7 nanotubes June 21st, 2017

Alloying materials of different structures offers new tool for controlling properties June 19th, 2017

New prospects for universal memory -- high speed of RAM and the capacity of flash: Thin films created at MIPT could be the basis for future development of ReRAM June 17th, 2017

Chip Technology

Alloying materials of different structures offers new tool for controlling properties June 19th, 2017

GLOBALFOUNDRIES®, ON Semiconductor Deliver the Industry’s Lowest Power Bluetooth® Low Energy SoC Family: 55nm LPx RF-enabled platform, with SST’s highly reliable embedded SuperFlash®, provides low power and cost for IoT and “Connected” Health and Wellness Devices June 19th, 2017

New prospects for universal memory -- high speed of RAM and the capacity of flash: Thin films created at MIPT could be the basis for future development of ReRAM June 17th, 2017

In a project funded by the Austrian Science Fund FWF, the physicist Serdar Sarıçiftçi investigates possible uses in electronics of the semiconductor properties of indigo pigment June 14th, 2017

Discoveries

Tiny bubbles provide tremendous propulsion in new microparticles research-Ben-Gurion U. June 21st, 2017

Enhanced photocatalytic activity by Cu2O nanoparticles integrated H2Ti3O7 nanotubes June 21st, 2017

Researchers developed nanoparticle based contrast agent for dual modal imaging of cancer June 21st, 2017

Alloying materials of different structures offers new tool for controlling properties June 19th, 2017

Announcements

Tiny bubbles provide tremendous propulsion in new microparticles research-Ben-Gurion U. June 21st, 2017

Enhanced photocatalytic activity by Cu2O nanoparticles integrated H2Ti3O7 nanotubes June 21st, 2017

Researchers developed nanoparticle based contrast agent for dual modal imaging of cancer June 21st, 2017

Cambridge Nanotherm partners with Inabata for global sales and distribution June 20th, 2017

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Tiny bubbles provide tremendous propulsion in new microparticles research-Ben-Gurion U. June 21st, 2017

Enhanced photocatalytic activity by Cu2O nanoparticles integrated H2Ti3O7 nanotubes June 21st, 2017

Alloying materials of different structures offers new tool for controlling properties June 19th, 2017

New prospects for universal memory -- high speed of RAM and the capacity of flash: Thin films created at MIPT could be the basis for future development of ReRAM June 17th, 2017

Research partnerships

Alloying materials of different structures offers new tool for controlling properties June 19th, 2017

Learning with light: New system allows optical “deep learning”: Neural networks could be implemented more quickly using new photonic technology June 12th, 2017

Making vessels leaky on demand could aid drug delivery:Rice University scientists use magnets and nanoparticles to open, close gaps in blood vessels June 8th, 2017

X-ray Study Reveals Way to Control Molecular Vibrations that Transmit Heat: Findings open new pathway for "tuning" materials to ease or insulate against the flow of heat, sound, and other forms of energy June 7th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project