Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Discovering Magnetism in Graphene

Abstract:
A 2010 Nobel Prize in Physics was given for the discovery of graphene. Graphene is a 2-D material that display a unique mix of properties including unprecedented electric conductivity, thermal conductance, mechanical properties, and others, which make it a very promising material to be used in future information processing, medical, and other applications. The only missing property for graphene to become the only known to date universal material was magnetism. It is not surprising why the search for magnetic properties in graphene has become of the most important scientific frontiers in the world. The main challenge was to establish stable long-range magnetic states in 2-D graphene systems.

Discovering Magnetism in Graphene

Berkeley, CA | Posted on November 4th, 2013

Multi-disciplinary researchers in Professor Sakhrat Khizroev group at Florida International University teamed up with Dr. Jeongmin Hong at the UC Berkeley, Professor Robert Haddon at UC-Riverside, and Professor Walt de Heer at Georgia Institute of Technology to experimentally demonstrate (for the first time) the presence of magnetic properties in graphene nanostructures at room temperature.

After working on this challenge since 2008, this multi-campus team has finally overcome this challenge by using refined functionalization chemistry to induce interacting magnetic spins in 1- and 2-dimensional graphene nanostructures. The pristine graphene used in these experiments was epitaxially grown in Georgia Tech. Then, it was chemically functionalized at UC-Riverside. The physics of magnetism was studied at FIU and Berkeley. Their study was presented in ACS Nano on October 28 online and will be presented in the issue of November.

The project is supported through National Science Foundation (NSF) Materials Research Science and Engineering Center (MRSEC) "Graphene-based Nanoelectronics" at Georgia Tech. This work is a continuation of the original research by the same team from a few years ago (published in Scientific Reports).

####

For more information, please click here

Contacts:
J Hong
550 SD Hall
Berkeley, CA 94720 USA
Phone: 9092720251

Copyright © UC Berkeley

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Download article:

Related News Press

Graphene/ Graphite

Graphene and quantum dots put in motion a CMOS-integrated camera that can see the invisible May 29th, 2017

Three-dimensional graphene: Experiment at BESSY II shows that optical properties are tuneable May 24th, 2017

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Graphene-nanotube hybrid boosts lithium metal batteries: Rice University prototypes store 3 times the energy of lithium-ion batteries May 19th, 2017

News and information

Graphene and quantum dots put in motion a CMOS-integrated camera that can see the invisible May 29th, 2017

Ag/ZnO-Nanorods Schottky diodes based UV-PDs are fabricated and tested May 26th, 2017

New metamaterial-enhanced MRI technique tested on humans May 26th, 2017

Controlling 3-D behavior of biological cells using laser holographic techniques May 26th, 2017

Physics

Unveiling the quantum necklace: Researchers simulate quantum necklace-like structures in superfluids May 26th, 2017

Govt.-Legislation/Regulation/Funding/Policy

Graphene and quantum dots put in motion a CMOS-integrated camera that can see the invisible May 29th, 2017

New metamaterial-enhanced MRI technique tested on humans May 26th, 2017

Controlling 3-D behavior of biological cells using laser holographic techniques May 26th, 2017

Unveiling the quantum necklace: Researchers simulate quantum necklace-like structures in superfluids May 26th, 2017

Discoveries

Graphene and quantum dots put in motion a CMOS-integrated camera that can see the invisible May 29th, 2017

Ag/ZnO-Nanorods Schottky diodes based UV-PDs are fabricated and tested May 26th, 2017

New metamaterial-enhanced MRI technique tested on humans May 26th, 2017

Controlling 3-D behavior of biological cells using laser holographic techniques May 26th, 2017

Announcements

Graphene and quantum dots put in motion a CMOS-integrated camera that can see the invisible May 29th, 2017

Ag/ZnO-Nanorods Schottky diodes based UV-PDs are fabricated and tested May 26th, 2017

New metamaterial-enhanced MRI technique tested on humans May 26th, 2017

Controlling 3-D behavior of biological cells using laser holographic techniques May 26th, 2017

Research partnerships

Graphene and quantum dots put in motion a CMOS-integrated camera that can see the invisible May 29th, 2017

Ag/ZnO-Nanorods Schottky diodes based UV-PDs are fabricated and tested May 26th, 2017

Three-dimensional graphene: Experiment at BESSY II shows that optical properties are tuneable May 24th, 2017

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project