Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Discovering Magnetism in Graphene

Abstract:
A 2010 Nobel Prize in Physics was given for the discovery of graphene. Graphene is a 2-D material that display a unique mix of properties including unprecedented electric conductivity, thermal conductance, mechanical properties, and others, which make it a very promising material to be used in future information processing, medical, and other applications. The only missing property for graphene to become the only known to date universal material was magnetism. It is not surprising why the search for magnetic properties in graphene has become of the most important scientific frontiers in the world. The main challenge was to establish stable long-range magnetic states in 2-D graphene systems.

Discovering Magnetism in Graphene

Berkeley, CA | Posted on November 4th, 2013

Multi-disciplinary researchers in Professor Sakhrat Khizroev group at Florida International University teamed up with Dr. Jeongmin Hong at the UC Berkeley, Professor Robert Haddon at UC-Riverside, and Professor Walt de Heer at Georgia Institute of Technology to experimentally demonstrate (for the first time) the presence of magnetic properties in graphene nanostructures at room temperature.

After working on this challenge since 2008, this multi-campus team has finally overcome this challenge by using refined functionalization chemistry to induce interacting magnetic spins in 1- and 2-dimensional graphene nanostructures. The pristine graphene used in these experiments was epitaxially grown in Georgia Tech. Then, it was chemically functionalized at UC-Riverside. The physics of magnetism was studied at FIU and Berkeley. Their study was presented in ACS Nano on October 28 online and will be presented in the issue of November.

The project is supported through National Science Foundation (NSF) Materials Research Science and Engineering Center (MRSEC) "Graphene-based Nanoelectronics" at Georgia Tech. This work is a continuation of the original research by the same team from a few years ago (published in Scientific Reports).

####

For more information, please click here

Contacts:
J Hong
550 SD Hall
Berkeley, CA 94720 USA
Phone: 9092720251

Copyright © UC Berkeley

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Download article:

Related News Press

News and information

'Lossless' metamaterial could boost efficiency of lasers and other light-based devices February 20th, 2017

Particles from outer space are wreaking low-grade havoc on personal electronics February 19th, 2017

Liquid metal nano printing set to revolutionize electronics: Creating integrated circuits just atoms thick February 18th, 2017

Engineers shrink microscope to dime-sized device February 17th, 2017

Physics

Research reveals novel quantum state in strange insulating materials February 14th, 2017

Sorting machine for atoms:Researchers at the University of Bonn clear a further hurdle on the path to creating quantum computers February 10th, 2017

The shape of melting in two dimensions: University of Michigan team uses Titan to explore fundamental phase transitions February 2nd, 2017

Graphene/ Graphite

Graphene foam gets big and tough: Rice University's nanotube-reinforced material can be shaped, is highly conductive February 13th, 2017

Direct radiolabeling of nanomaterials: Directly radiolabeled nanographene materials without chelators are suitable for bioimaging applications February 9th, 2017

Govt.-Legislation/Regulation/Funding/Policy

'Lossless' metamaterial could boost efficiency of lasers and other light-based devices February 20th, 2017

Engineers shrink microscope to dime-sized device February 17th, 2017

Francis Alexander Named Deputy Director of Brookhaven Lab's Computational Science Initiative February 16th, 2017

Good vibrations help reveal molecular details: Rice University scientists combine disciplines to pinpoint small structures in unlabeled molecules February 15th, 2017

Discoveries

'Lossless' metamaterial could boost efficiency of lasers and other light-based devices February 20th, 2017

Particles from outer space are wreaking low-grade havoc on personal electronics February 19th, 2017

Liquid metal nano printing set to revolutionize electronics: Creating integrated circuits just atoms thick February 18th, 2017

Engineers shrink microscope to dime-sized device February 17th, 2017

Announcements

'Lossless' metamaterial could boost efficiency of lasers and other light-based devices February 20th, 2017

Particles from outer space are wreaking low-grade havoc on personal electronics February 19th, 2017

Liquid metal nano printing set to revolutionize electronics: Creating integrated circuits just atoms thick February 18th, 2017

Engineers shrink microscope to dime-sized device February 17th, 2017

Research partnerships

Graphene foam gets big and tough: Rice University's nanotube-reinforced material can be shaped, is highly conductive February 13th, 2017

Cedars-Sinai, UCLA Scientists Use New ‘Blood Biopsies’ With Experimental Device to Speed Cancer Diagnosis and Predict Disease Spread: Leading-Edge Research Is Part of National Cancer Moonshot Initiative February 13th, 2017

Highly sensitive gas sensors for volatile organic compound detection February 6th, 2017

UCLA physicists map the atomic structure of an alloy: Researchers measured the coordinates of more than 23,000 atoms in a technologically important material February 3rd, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project