Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > XEI Scientific reports a novel approach to removing silicone-based contamination in a recent publication in JVST(A)

Abstract:
XEI Scientific Inc, manufacturer of the popular EVACTRON® De-Contaminator™ Plasma Cleaning System for electron microscopes and other vacuum chambers, is pleased to announce the publication of a paper in collaboration with General Electric's Global Research Center on the use of in-situ plasma cleaning. The paper appears in the Journal of Vacuum Science & Technology A.

XEI Scientific reports a novel approach to removing silicone-based contamination in a recent publication in JVST(A)

Redwood City, CA | Posted on November 4th, 2013

Contamination, even at extremely low levels, can often hide or distort analyses of surfaces that researchers would like to study. Such is the case of many of the samples analysed at General Electric's Global Research Center in New York. Attempts to study "as received" samples by time of flight secondary ion mass spectrometry (ToF-SIMS) reveal a contamination signature that has come from processing, handling and/or a specific exposure. ToF-SIMS provides high surface specificity so that contamination by hydrocarbons and/or silicones may actually mask the surface features of interest, which may inhibit or compromise accurate analysis. While use of remote plasmas to mitigate hydrocarbon contamination is established technology, this paper represents the first demonstration that silicones (in this case, polydimethylsiloxame) can be removed as well.

In the paper, "In-situ plasma cleaning of samples to remove hydrocarbon and/or polydimethylsiloxame prior to ToF-SIMS analysis1", lead author Vincent Smentkowski reports on the use of an Evactron® air-based remote plasma for cleaning of samples. This approach is preferred to sputter cleaning as the latter often changes the chemistry on the surface under analysis. Here, samples were cleaned in the load lock of a commercially available ToF-SIMS instrument immediately prior to analysis. The experimental observations show that the Evactron system produces no ion beam effects (sputtering) with even extended exposure, thus showing minimal artifacts from material removal and ion bombardment. This advantage results from the design of the Evactron RF plasma cleaner which minimizes ion formation and downstream sputtering, allowing radical species to dominate the cleaning process.

It is interesting to note that plasmas generated using ambient air result in surface oxidation and this is often beneficial through the increase in sensitivity of ToF-SIMS where the ion yield of many elements is enhanced. This paper demonstrates the potential for the use of plasma cleaning not only for basic analyses but in a production environment as well.

XEI has sold more than 1800 Evactron systems worldwide solving contamination problems in many different environments using instrumentation such as electron microscopes, FIBs and other vacuum sample chambers. Please visit our web site for the latest details, www.evactron.com.

1Reference: J. Vac. Sci. Technol. A 31, 06F105 (2013); doi: 10.1116/1.4822516

####

About XEI Scientific Inc.
XEI Scientific Inc. invented the Evactron De-Contaminator in 1999 as the first plasma cleaner to use a downstream cleaning process to remove carbon from electron microscopes. A proprietary plasma source uses air to produce oxygen radicals for oxidation of carbon compounds for removal by the pumps. Carbon-free-vacuum produces the highest quality images and analytical results from SEMs and other vacuum analytical instruments. XEI innovations include a unique RF plasma generator, a patented RF electrode, and easy start programmed plasma cleaning. All XEI products come with a 5 year warranty and are compliant with CE, NRTL, and Semi-S2 safety standards. XEI offers a variety of Evactron® decontamination systems to meet user needs and >1800 installations around the world.

For more information, please click here

Contacts:
XEI Scientific, Inc
1755 E Bayshore Road
Redwood City
CA 94063, USA
T +1 (650) 369-0133
F +1 (650) 363-1659
www.evactron.com


Talking Science Limited
39 de Bohun Court
Saffron Walden
Essex CB10 2BA UK
T +44 (0)1799 521881
M +44 (0)7843 012997
www.talking-science.com

Copyright © XEI Scientific Inc.

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Spin current detection in quantum materials unlocks potential for alternative electronics October 15th, 2017

Quantum manipulation power for quantum information processing gets a boost: Improving the efficiency of quantum heat engines involves reducing the number of photons in a cavity, ultimately impacting quantum manipulation power October 14th, 2017

Imaging

Seeing the next dimension of computer chips: Researchers image perfectly smooth side-surfaces of 3-D silicon crystals with a scanning tunneling microscope, paving the way for smaller and faster computing devices October 11th, 2017

Quorum announces new customer support and demonstration facilities for users worldwide October 10th, 2017

Photoacoustic imaging and photothermal cancer therapy using BR nanoparticles September 26th, 2017

Graphene based terahertz absorbers: Printable graphene inks enable ultrafast lasers in the terahertz range September 13th, 2017

Announcements

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Rice U. study: Vibrating nanoparticles interact: Placing nanodisks in groups can change their vibrational frequencies October 16th, 2017

Spin current detection in quantum materials unlocks potential for alternative electronics October 15th, 2017

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Rice U. study: Vibrating nanoparticles interact: Placing nanodisks in groups can change their vibrational frequencies October 16th, 2017

Spin current detection in quantum materials unlocks potential for alternative electronics October 15th, 2017

Tools

Nanometrics Announces Preliminary Results for the Third Quarter of 2017: Quarterly Results Impacted by Delays in Revenue Recognition on Multiple Systems into Japan October 12th, 2017

Seeing the next dimension of computer chips: Researchers image perfectly smooth side-surfaces of 3-D silicon crystals with a scanning tunneling microscope, paving the way for smaller and faster computing devices October 11th, 2017

Quorum announces new customer support and demonstration facilities for users worldwide October 10th, 2017

Graphene forged into three-dimensional shapes September 26th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project