Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Iranian Scientists Use Nanoparticles to Remove Microorganisms from Aqueous Media

Abstract:
Iranian environmental engineers studied the performance of zinc oxide nanoparticles in photocatalytic disinfection of microbial pollutions from aqueous media.

Iranian Scientists Use Nanoparticles to Remove Microorganisms from Aqueous Media

Tehran, Iran | Posted on October 26th, 2013

Iranian environmental engineers studied the performance of zinc oxide nanoparticles in photocatalytic disinfection of microbial pollutions from aqueous media.

The removal of microorganisms by using nanoparticles in the presence of UV, which has applications in food and medical industries, drinking water, and environmental industries, has higher performance than the removal method by using only UV.

Dr. Mohammad Yousef Alikhani, a member of the Scientific Board of Hamedan University of Medical Sciences, explained about the research, and stated, "The most important objective in this research was the study the kinetics of the removal of Escherichia coli process in the designed reactor. According to the experiments, the reaction was determined to be first degree."

Results of the research showed that the efficiency of the method increased as the concentration of nanoparticles increased. The reason was the increase in the surface of catalyst and also the free electrons created by nanoparticles. The same result was obtained for contact time and the initial concentration of bacteria. The optimum condition of pH value of the media was reported neutral pH, because the performance of the photocatalyst decreases at acidic or alkaline environment.

According to Dr. Alikhani, the performance of UV/zinc oxide process in the removal of Escherichia coli significantly increased in comparison with that of purification process by using UV due to the smaller size and higher surface area of the modified nanoparticles. Therefore, a simultaneous process of UV/zinc oxide nanoparticles can be used as an effective method in the disinfection of microorganisms from aqueous solutions.

Results of the research have been published in details in Water Science & Technology in February 2013, vol. 67, issue 3, pp. 557-563.

####

For more information, please click here

Copyright © Fars News Agency

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Dartmouth team creates new method to control quantum systems May 24th, 2016

Light can 'heal' defects in new solar cell materials: Defects in some new electronic materials can be removed by making ions move under illumination May 24th, 2016

Attosecond physics: A switch for light-wave electronics May 24th, 2016

Supercrystals with new architecture can enhance drug synthesis May 24th, 2016

Discoveries

Dartmouth team creates new method to control quantum systems May 24th, 2016

Light can 'heal' defects in new solar cell materials: Defects in some new electronic materials can be removed by making ions move under illumination May 24th, 2016

Attosecond physics: A switch for light-wave electronics May 24th, 2016

Supercrystals with new architecture can enhance drug synthesis May 24th, 2016

Announcements

Dartmouth team creates new method to control quantum systems May 24th, 2016

Light can 'heal' defects in new solar cell materials: Defects in some new electronic materials can be removed by making ions move under illumination May 24th, 2016

Attosecond physics: A switch for light-wave electronics May 24th, 2016

Supercrystals with new architecture can enhance drug synthesis May 24th, 2016

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Dartmouth team creates new method to control quantum systems May 24th, 2016

Light can 'heal' defects in new solar cell materials: Defects in some new electronic materials can be removed by making ions move under illumination May 24th, 2016

Attosecond physics: A switch for light-wave electronics May 24th, 2016

Supercrystals with new architecture can enhance drug synthesis May 24th, 2016

Environment

Novel functionalized nanomaterials for CO2 capture May 10th, 2016

First single-enzyme method to produce quantum dots revealed: Biological manufacturing process, pioneered by three Lehigh University engineers, produces equivalent quantum dots to those made chemically--but in a much greener, cheaper way May 9th, 2016

Los Alamos National Laboratory Expands Scope to Locus Technologies SaaS Contract: Los Alamos National Laboratory Adds Two New Applications to Locus SaaS Platform May 7th, 2016

Understanding tiny droplets can make for better weather forecasts: Climate change models also benefit from understanding fundamental thermodynamics of water droplets May 6th, 2016

Water

Mille-feuille-filter removes viruses from water May 19th, 2016

First single-enzyme method to produce quantum dots revealed: Biological manufacturing process, pioneered by three Lehigh University engineers, produces equivalent quantum dots to those made chemically--but in a much greener, cheaper way May 9th, 2016

Understanding tiny droplets can make for better weather forecasts: Climate change models also benefit from understanding fundamental thermodynamics of water droplets May 6th, 2016

Engineers create a better way to boil water -- with industrial, electronics applications May 5th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic