Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Iranian Scientists Use Nanoparticles to Remove Microorganisms from Aqueous Media

Abstract:
Iranian environmental engineers studied the performance of zinc oxide nanoparticles in photocatalytic disinfection of microbial pollutions from aqueous media.

Iranian Scientists Use Nanoparticles to Remove Microorganisms from Aqueous Media

Tehran, Iran | Posted on October 26th, 2013

Iranian environmental engineers studied the performance of zinc oxide nanoparticles in photocatalytic disinfection of microbial pollutions from aqueous media.

The removal of microorganisms by using nanoparticles in the presence of UV, which has applications in food and medical industries, drinking water, and environmental industries, has higher performance than the removal method by using only UV.

Dr. Mohammad Yousef Alikhani, a member of the Scientific Board of Hamedan University of Medical Sciences, explained about the research, and stated, "The most important objective in this research was the study the kinetics of the removal of Escherichia coli process in the designed reactor. According to the experiments, the reaction was determined to be first degree."

Results of the research showed that the efficiency of the method increased as the concentration of nanoparticles increased. The reason was the increase in the surface of catalyst and also the free electrons created by nanoparticles. The same result was obtained for contact time and the initial concentration of bacteria. The optimum condition of pH value of the media was reported neutral pH, because the performance of the photocatalyst decreases at acidic or alkaline environment.

According to Dr. Alikhani, the performance of UV/zinc oxide process in the removal of Escherichia coli significantly increased in comparison with that of purification process by using UV due to the smaller size and higher surface area of the modified nanoparticles. Therefore, a simultaneous process of UV/zinc oxide nanoparticles can be used as an effective method in the disinfection of microorganisms from aqueous solutions.

Results of the research have been published in details in Water Science & Technology in February 2013, vol. 67, issue 3, pp. 557-563.

####

For more information, please click here

Copyright © Fars News Agency

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Atom-thick CCD could capture images: Rice University scientists develop two-dimensional, light-sensitive material December 20th, 2014

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Instant-start computers possible with new breakthrough December 19th, 2014

Aculon Hires New Business Development Director December 19th, 2014

Discoveries

Atom-thick CCD could capture images: Rice University scientists develop two-dimensional, light-sensitive material December 20th, 2014

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Instant-start computers possible with new breakthrough December 19th, 2014

Iranian Scientists Use Nanotechnology to Increase Power, Energy of Supercapacitors December 18th, 2014

Announcements

Atom-thick CCD could capture images: Rice University scientists develop two-dimensional, light-sensitive material December 20th, 2014

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Instant-start computers possible with new breakthrough December 19th, 2014

Aculon Hires New Business Development Director December 19th, 2014

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Atom-thick CCD could capture images: Rice University scientists develop two-dimensional, light-sensitive material December 20th, 2014

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Instant-start computers possible with new breakthrough December 19th, 2014

Iranian Scientists Use Nanotechnology to Increase Power, Energy of Supercapacitors December 18th, 2014

Environment

Nanoparticles Prove Effective in Removing Phosphor from Calcareous Soil December 10th, 2014

Detecting gases wirelessly and cheaply: New sensor can transmit information on hazardous chemicals or food spoilage to a smartphone December 8th, 2014

Nanocatalysts Can Reduce Pollution Caused by Diesel Engines December 4th, 2014

Green meets nano: Scientists at TU Darmstadt create multifunctional nanotubes using nontoxic materials December 3rd, 2014

Water

Unraveling the light of fireflies December 17th, 2014

Biomimetic dew harvesters: Understanding how a desert beetle harvests water from dew could improve drinking water collection in dew condensers December 8th, 2014

Iranian Scientists Refine Wastewater of Nuclear Power Plants Using Nanoparticles December 1st, 2014

Iranian Experts Clean Uranium-Contaminated Water by Nano-Particles November 23rd, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE