Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > When scaling the quantum slopes, veer for the straight path (Physical Review A)

Princeton University researchers found that the “landscape” for quantum control (above) — a representation of quantum mechanics that allows the dynamics of atoms and molecules to be manipulated — can be unexpectedly simple, which could help scientists realize the next generation of technology by harnessing atoms and molecules to create small but incredibly powerful devices. Scientists achieve quantum control by finding the ideal radiation field (top of the graphic) that leads to the desired response from the system. Like a mountain hiker, a scientist can take a difficult, twisting path that requires frequent stops to evaluate the next step (right path). Or, they can opt for a straighter trail that cuts directly to the summit (left path). The researchers provide in their paper an algorithm that scientists can use to identify the starting point of the straight path to their desired quantum field.Image courtesy of Arun Nanduri
Princeton University researchers found that the “landscape” for quantum control (above) — a representation of quantum mechanics that allows the dynamics of atoms and molecules to be manipulated — can be unexpectedly simple, which could help scientists realize the next generation of technology by harnessing atoms and molecules to create small but incredibly powerful devices. Scientists achieve quantum control by finding the ideal radiation field (top of the graphic) that leads to the desired response from the system. Like a mountain hiker, a scientist can take a difficult, twisting path that requires frequent stops to evaluate the next step (right path). Or, they can opt for a straighter trail that cuts directly to the summit (left path). The researchers provide in their paper an algorithm that scientists can use to identify the starting point of the straight path to their desired quantum field.

Image courtesy of Arun Nanduri

Abstract:
By Morgan Kelly, Office of Communications

Like any task, there is an easy and a hard way to control atoms and molecules as quantum systems, which are driven by tailored radiation fields. More efficient methods for manipulating quantum systems could help scientists realize the next generation of technology by harnessing atoms and molecules to create small but incredibly powerful devices such as molecular electronics or quantum computers.

When scaling the quantum slopes, veer for the straight path (Physical Review A)

Princeton, NJ | Posted on October 24th, 2013

Of course, controlling quantum systems is as painstaking as it sounds, and requires scientists to discover the ideal radiation field that leads to the desired response from the system. Scientists know that reaching that state of quantum nirvana can be a long and expensive slog, but Princeton University researchers have found that the process might be more straightforward than previously thought.

The researchers report in the journal Physical Review A that quantum-control "landscapes" — the path of a system's response from the initial field to the final desired field — appears to be unexpectedly simple. Although still a mountain of a task, finding a good control radiation field turns out to be very much like climbing a mountain, and scientists need only choose the right path. Like a hiker, a scientist can take a difficult, twisting path that requires frequent stops to evaluate which step to take next. Or, as the Princeton researchers show, they can opt for a straighter trail that cuts directly to the summit.

The researchers observe in their paper that these fast tracks toward the desired control field actually exist, and are scattered all over the landscape. They provide an algorithm that scientists can use to identify the starting point of the straight path to their desired quantum field.

The existence of nearly straight paths to reach the best quantum control was surprising because the landscapes were assumed to be serpentine, explained first author Arun Nanduri, who received his bachelor's degree in physics from Princeton in 2013 and is working in the laboratory of Herschel Rabitz, Princeton's Charles Phelps Smyth '16 *17 Professor of Chemistry.

"We found that not only can you always climb to the top, but you can climb along a simple path to the top," Nanduri said. "If we could consistently identify where these paths are located, a scientist could efficiently climb the landscape. Looking around for the next good step along an unknown path takes great effort. However, starting along a straight path requires you to look around once, and you can keep walking forward with your eyes closed, as it were."

Following a straighter path could be a far more efficient way of achieving control of atoms and molecules for a host of applications, including manipulating chemical reactions and operating quantum computers, Nanduri said. The source of much scientific excitement, quantum computers would use "qubits" that can be entangled to potentially give them enormous storage and computational capacities far beyond the capabilities of today's digital computers.

If the Princeton research helps scientists quickly and easily find the control fields they need, it could also allow them to carry out improved measurements of quantum systems and design new ones, Nanduri said.

"We don't know if our discovery will directly lead to futuristic quantum devices, but this finding should spur renewed research," Nanduri said. "If straight paths to good quantum control solutions can be routinely found, it would be remarkable."

The work was funded by the Program in Plasma Science and Technology at Princeton University, the Army Research Office, and the U.S. Department of Energy.

####

For more information, please click here

Contacts:
Morgan Kelly

609-258-5729

Copyright © Princeton University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Read the abstract:

Related News Press

News and information

Nanodiamonds Are Forever: A UCSB professor’s research examines 13,000-year-old nanodiamonds from multiple locations across three continents August 27th, 2014

Aspen Aerogels, Inc. to Present at Barclays CEO Energy-Power Conference August 27th, 2014

Nanotech Security Corp. to Acquire Fortress Optical Features Ltd., a Leading Producer of Banknote Security Features August 27th, 2014

Malvern specialists to deliver inaugural short course on polymer characterization at Interplas 2014 August 27th, 2014

Govt.-Legislation/Regulation/Funding/Policy

Introducing the multi-tasking nanoparticle: Versatile particles offer a wide variety of diagnostic and therapeutic applications August 26th, 2014

Scientists craft atomically seamless, thinnest-possible semiconductor junctions August 26th, 2014

Competition for Graphene: Berkeley Lab Researchers Demonstrate Ultrafast Charge Transfer in New Family of 2D Semiconductors August 26th, 2014

X-ray Laser Probes Tiny Quantum Tornadoes in Superfluid Droplets: SLAC Experiment Reveals Mysterious Order in Liquid Helium August 25th, 2014

Quantum Computing

Molecular engineers record an electron's quantum behavior August 14th, 2014

Diamonds are a Quantum Computer’s Best Friend: A new kind of quantum computer is being proposed by scientists from the TU Wien (Vienna) and Japan (National Institute of Informatics and NTT Basic Research Labs) August 8th, 2014

Diamond defect interior design: Planting imperfections called 'NV centers' at specific spots within a diamond lattice could advance quantum computing and atomic-scale measurement August 5th, 2014

Watching Schrödinger's cat die (or come to life): Steering quantum evolution & using probes to conduct continuous error correction in quantum computers July 30th, 2014

Discoveries

The thunder god vine, assisted by nanotechnology, could shake up future cancer treatment: Targeted therapy for hepatocellular carcinoma using nanotechnology August 27th, 2014

Introducing the multi-tasking nanoparticle: Versatile particles offer a wide variety of diagnostic and therapeutic applications August 26th, 2014

Scientists craft atomically seamless, thinnest-possible semiconductor junctions August 26th, 2014

Creation of a Highly Efficient Technique to Develop Low-Friction Materials Which Are Drawing Attention in Association with Energy Issues August 26th, 2014

Announcements

Nanodiamonds Are Forever: A UCSB professor’s research examines 13,000-year-old nanodiamonds from multiple locations across three continents August 27th, 2014

Aspen Aerogels, Inc. to Present at Barclays CEO Energy-Power Conference August 27th, 2014

Nanotech Security Corp. to Acquire Fortress Optical Features Ltd., a Leading Producer of Banknote Security Features August 27th, 2014

Malvern specialists to deliver inaugural short course on polymer characterization at Interplas 2014 August 27th, 2014

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals

The thunder god vine, assisted by nanotechnology, could shake up future cancer treatment: Targeted therapy for hepatocellular carcinoma using nanotechnology August 27th, 2014

Introducing the multi-tasking nanoparticle: Versatile particles offer a wide variety of diagnostic and therapeutic applications August 26th, 2014

Scientists craft atomically seamless, thinnest-possible semiconductor junctions August 26th, 2014

Competition for Graphene: Berkeley Lab Researchers Demonstrate Ultrafast Charge Transfer in New Family of 2D Semiconductors August 26th, 2014

Military

Introducing the multi-tasking nanoparticle: Versatile particles offer a wide variety of diagnostic and therapeutic applications August 26th, 2014

Biomimetic photodetector 'sees' in color: Rice lab uses CMOS-compatible aluminum for on-chip color detection August 25th, 2014

New material could enhance fast and accurate DNA sequencing August 13th, 2014

On the frontiers of cyborg science August 10th, 2014

Quantum nanoscience

X-ray Laser Probes Tiny Quantum Tornadoes in Superfluid Droplets: SLAC Experiment Reveals Mysterious Order in Liquid Helium August 25th, 2014

Rice physicist emerges as leader in quantum materials research: Nevidomskyy wins both NSF CAREER Award and Cottrell Scholar Award August 20th, 2014

Molecular engineers record an electron's quantum behavior August 14th, 2014

Moore quantum materials: Recipe for serendipity - Moore Foundation grant will allow Rice physicist to explore quantum materials August 12th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE