Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Nanodiamonds: a cancer patient’s best friend? Real-time monitoring of cancer cell processes could soon be possible thanks to nanometric scale diamonds used as biosensors

Abstract:
Diamonds are sometimes considered as a girl's best friend. Now, this expression is about to have a new meaning. Indeed, nanometric scale diamond particles could offer a new way to detect cancer far earlier than previously thought. This is precisely the objective of a research project called Dinamo, funded by the EU. Specifically, it aims to develop a non-invasive nanotechnology sensing platform for real-time monitoring of biomolecular processes in living cancer cells.

Nanodiamonds: a cancer patient’s best friend? Real-time monitoring of cancer cell processes could soon be possible thanks to nanometric scale diamonds used as biosensors

Brussels, Belgium | Posted on October 24th, 2013

To do so, they developed a new technique, based on the use of fluorescent nanodiamond particles (NDPs). "We demonstrated that the specific combination of NDP-properties make them a highly suitable material for the construction of probes capable of sensing biomolecules ranging from proteins to DNA," says team coordinator Milos Nesladek, who is also principle scientist at the Institute for Material Research, Imec, based in Leuven, Belgium, "such probes could be used to study molecular processes in cells at nanoscale."

The trouble is that previous solutions did not allow monitoring processes within living cells for any extended period of time. "Our key challenge was to replace fluorescent bimolecular dyes that are currently used as luminescence markers in cancer cell research," explains Nesladek.

NDPs present several advantages. They are highly biocompatible. They can remain for prolonged periods inside cells without influencing any cellular mechanisms. Furthermore, they can be engineered to obtain a range of optic, magnetic and surface properties. "The small size of NDPs enables them to penetrate individual cell membranes in a non-invasive way, which causes no damage to the cell and without any disruption of normal cellular functions," Nesladek tells CommNet. "The luminescence and the magnetic properties change depending on the NDP's interaction with the cellular environment," he adds.

The surface properties of NDPs are such that it is possible to attach specific biomolecules to them, such as primary DNA molecules. Delivered precisely to the target cell, these biomolecules can measure, monitor or alter biological components within the cell. The NDPs can thus become not only a tool to monitor and detect pre-cancerous changes, but also to rectify them. Further developments are going on in subsequent EU-projects such as DIAMANT.

Some experts welcome this approach. "Development of new drug delivery carriers is crucial for treatment of numerous deceases, including cancer," comments Fedor Jelezko, director of the Institute of Quantum Optics at Ulm University in Germany. "The novelty of approach in [the project] is the use of innovative material to transport drugs," he tells CommNet. Nanodiamond provides unique opportunities for drug carrier design since they can be imaged optically using fluorescence microscopy technique. "This allows monitoring of drug delivery and release of drugs in the cells with unprecedented details," he adds. This monitoring has already been demonstrated by teams of the Ecole Normale Supérieure (ENS) in Cachan and Gustave Roussy Cancer Institute in Paris, France.

Other experts are more cautious. "Although there have been numerous convincing experiments showing that nanodiamonds can carry active anti-cancer drugs in culture cells and even in mice, it is very unlikely that it will be ever used in humans, mostly because diamond is so inert that it cannot be degraded and therefore cannot be easily eliminated by the body", comments François Treussart, physics professor at the ENS.

However, he seems a bright future for the technology. "Far beyond the [project] goals, nanodiamond future in medical applications is more as a diagnostic device in personal medicine or as a monitoring tool for example to track stem cell engraftment in regenerative medicine, as recently demonstrated by the biomedical applications of fluorescent ND-team at the Institute of Atomic and Molecular Science, at the Academia Sinica inTaiwan," he concludes.

A NDP-probe, placed in a target cell, should be able to detect and relay information about the processes taking place in this cell. "The Dinamo project has been finished, but the partners still are collaborating," Nesladek tells. "The University of Stuttgart in Germany is developing a NDP-probe. "Dinamo has focused on the context of breast cancer and colorectal cancer, but there is no reason why the technique could not be applied to a wide range of other cancers," he tells CommNet. He concludes that another future aim is to explore the possibility of using NDP probes to detect cancer stem cells.

www.commnet.eu

####

For more information, please click here

Contacts:
Silvia Raimondi

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Nanomedicine

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Good as gold - improving infectious disease testing with gold nanoparticles April 5th, 2024

Researchers develop artificial building blocks of life March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Sensors

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

$900,000 awarded to optimize graphene energy harvesting devices: The WoodNext Foundation's commitment to U of A physicist Paul Thibado will be used to develop sensor systems compatible with six different power sources January 12th, 2024

A color-based sensor to emulate skin's sensitivity: In a step toward more autonomous soft robots and wearable technologies, EPFL researchers have created a device that uses color to simultaneously sense multiple mechanical and temperature stimuli December 8th, 2023

New tools will help study quantum chemistry aboard the International Space Station: Rochester Professor Nicholas Bigelow helped develop experiments conducted at NASA’s Cold Atom Lab to probe the fundamental nature of the world around us November 17th, 2023

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Research partnerships

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

'Sudden death' of quantum fluctuations defies current theories of superconductivity: Study challenges the conventional wisdom of superconducting quantum transitions January 12th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project