Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Project aims to mass-produce 'nanopetals' for sensors, batteries

These color-enhanced scanning electron microscope images show nanosheets resembling tiny rose petals. The nanosheets are key components of a new type of biosensor that can detect minute concentrations of glucose in saliva, tears and urine. The technology might eventually help to eliminate or reduce the frequency of using pinpricks for diabetes testing.Purdue University photo/Jeff Goecker
These color-enhanced scanning electron microscope images show nanosheets resembling tiny rose petals. The nanosheets are key components of a new type of biosensor that can detect minute concentrations of glucose in saliva, tears and urine. The technology might eventually help to eliminate or reduce the frequency of using pinpricks for diabetes testing.

Purdue University photo/Jeff Goecker

Abstract:
Researchers at Purdue University are developing a method to mass-produce a new type of nanomaterial for advanced sensors and batteries, with an eye toward manufacturing in the Midwest.

Project aims to mass-produce 'nanopetals' for sensors, batteries

West Lafayette, IN | Posted on October 22nd, 2013

Research findings indicate the material shows promise as a sensor for detecting glucose in the saliva or tears and for "supercapacitors" that could make possible fast-charging, high-performance batteries.

However, for the material to be commercialized researchers must find a way to mass-produce it at low cost.

"It's one thing to say you've got a new wonder material, but can you prove that it can be made on a commercial scale?" said Arvind Raman, Robert V. Adams Professor of Mechanical Engineering. "In many cases we find that fundamental research needs to be done for scaling up. You want to be able to produce large quantities of the material at 50 cents per square meter."

Now, a team of Purdue researchers will aim to do just that. The project, funded with a $1.5 million grant from the National Science Foundation, focuses on creating a nanomanufacturing method that is "scalable," or capable of mass production at low cost.

The underlying technology was developed by a research group led by Timothy Fisher, the James G. Dwyer Professor in Mechanical Engineering. It consists of vertical nanostructures resembling tiny rose petals made of a material called graphene, which is a single-atom-thick film of carbon.

"Using these graphene nanopetals we have realized exceptional performance in a wide range of devices at laboratory scales," Fisher said.

The researchers hope to boost the production speed of nanopetal-coated surfaces to 10 square meters per hour, representing a dramatic increase over the laboratory-scale production rate.

Raman has expertise in roll-to-roll manufacturing, a mainstay of many industrial operations including paper and sheet-metal production. He models the mechanics of the process of creating flexible materials in sheets at high speed and under tension.

"A key factor is going to be industry partners," he said. "There are many industries that have roll-to-roll operations. So focusing on roll-to-roll as a platform for doing nanomaterials production is very strategic for the Midwest."

He also has expertise in precision measurement using an atomic force microscope.

"You have to be able to measure the material while it is being manufactured, and this is a challenge because of the nanometer scale of the petals," he said.

The graphene nanopetals also have shown promise as a "thermal-interface" material to keep computer chips from overheating.

"A slew of new device and material concepts based on graphene nanopetals are emerging in applications as diverse as carbon fiber composites and new thermal-interface materials," Raman said. "Commercial interest is extremely high for this recent carbon nanomaterial. "

Other key researchers in the project are Alina Alexeenko, an associate professor of aeronautics and astronautics; Alexander Wei, a professor in the Department of Chemistry; Ernesto E. Marinero, a professor of engineering practice in the schools of Chemical Engineering and Materials Engineering; and Euiwon Bae, a research professor of mechanical engineering.

The nanopetals are created in a vacuum by exposing a cloth of carbon fiber to high-energy plasma that contains hydrogen ions and other ingredients, a process known as plasma-enhanced chemical vapor deposition. Alexeenko will lead work to model the plasma reactor and to optimize its conditions for fast and environmentally friendly conversion of raw materials, such as methane and hydrogen, into carbon nanopetals.

Wei will functionalize petals with metal nanoparticles and enzymes that recognize glucose or other target molecules for biosensing. Marinero will focus on reliability of devices made using the nanomaterial, and Bae will work to ensure proper petal size by analyzing patterns of light scattering from the material's surface.

Most of the research will be based at the Birck Nanotechnology Center in Purdue's Discovery Park.

"Scale-up production is a key challenge facing nanotechnology," said Ali Shakouri, the Mary Jo and Robert L. Kirk Director of the Birck Nanotechnology Center and a professor of electrical and computer engineering. "This NSF project is part of a broader nanomanufacturing initiative at the Birck Nanotechnology Center where we focus on roll-to-roll production of smart thin films for applications in pharmacy and food packaging."

Wei said, "The project represents the front edge of a much larger movement at Purdue to synergize core research expertise in science and engineering in a way that provides graduate students with opportunities to overcome the challenges of converting exciting research discoveries into products that can be commercialized."

Technologies developed in the project might be commercialized through collaboration with a local start-up company, Folium Nanotechnologies LLC, co-founded by Fisher and Marinero, as well as Roche Diagnostics and the Battery Innovation Center. The center was launched this year to leverage Indiana's public- and private-sector assets in advanced battery technologies to facilitate research and development, rapid prototyping and contract manufacturing for industry, academic and military customers.

"A regional workshop series on roll-to-roll nanomanufacturing will be organized to serve as a catalyst to innovation in the Midwest by bringing together interested small, medium and large enterprises together with original equipment manufacturers and university researchers," Raman said.

The new technology could be of particular interest to battery makers in Indiana.

The researchers also will make available advanced simulation tools for vacuum-based roll-to-roll processes. The tools will be available to companies through the cyberinfrastructure of the manufacturing HUB and nanoHUB, an interactive website that makes available scientific simulations, seminars, interactive courses and other specialized nanotech-related materials.

"We will educate the U.S. workforce through an innovative online class on nanomanufacturing offered as part of the nanoHUB U initative," Raman said.

The research has potential for broad impact.

"Many results from this research are not just applicable to graphene nanopetal technology, but rather to a wide variety of nanomaterials manufactured in low-pressure and ambient roll-to-roll nanomanufacturing processes," he said.

####

For more information, please click here

Contacts:
Writer:
Emil Venere
765-494-4709


Sources:
Arvind Raman
765-494-5733


Timothy Fisher
765-494-5627


Alexander Wei
765-494-5257


Ali Shakouri
765-496-6105

Copyright © Purdue University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Jobs

Could quantum technology be New Mexico’s next economic boon? Quantum New Mexico Coalition aims to establish state as national hub April 1st, 2022

SEMI Partners with GLOBALFOUNDRIES to Offer Apprenticeship Program Aimed at Building the Electronics Talent Pipeline August 11th, 2020

March 17th, 2020

Arrowhead Pharmaceuticals Reports Inducement Grants under NASDAQ Marketplace Rule 5635(c)(4) March 29th, 2019

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Industrial

Boron nitride nanotube fibers get real: Rice lab creates first heat-tolerant, stable fibers from wet-spinning process June 24th, 2022

Nanotubes: a promising solution for advanced rubber cables with 60% less conductive filler June 1st, 2022

Protective equipment with graphene nanotubes meets the strictest ESD safety standards March 25th, 2022

OCSiAl receives the green light for Luxembourg graphene nanotube facility project to power the next generation of electric vehicles in Europe March 4th, 2022

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Discovery of new Li ion conductor unlocks new direction for sustainable batteries: University of Liverpool researchers have discovered a new solid material that rapidly conducts lithium ions February 16th, 2024

A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project