Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > A Grand Unified Theory of Exotic Superconductivity? Scientists introduce a general theoretical approach that describes all known forms of high-temperature superconductivity and their "intertwined" phases

Séamus Davis
Séamus Davis

Abstract:
Years of experiments on various types of high-temperature (high-Tc) superconductors-materials that offer hope for energy-saving applications such as zero-loss electrical power lines-have turned up an amazing array of complex behaviors among the electrons that in some instances pair up to carry current with no resistance, and in others stop the flow of current in its tracks. The variety of these exotic electronic phenomena is a key reason it has been so hard to identify unifying concepts to explain why high-Tc superconductivity occurs in these promising materials.

A Grand Unified Theory of Exotic Superconductivity? Scientists introduce a general theoretical approach that describes all known forms of high-temperature superconductivity and their "intertwined" phases

Upton, NY | Posted on October 17th, 2013

Now Séamus Davis, a physicist who's conducted experiments on many of these materials at the U.S. Department of Energy's (DOE) Brookhaven National Laboratory and Cornell University, and Dung-Hai Lee, a theorist at DOE's Lawrence Berkeley National Laboratory and the University of California, Berkeley, postulate a set of key principles for understanding the superconductivity and the variety of "intertwined" electronic phenomena that applies to all the families of high-Tc superconductors. They describe these general concepts in a paper published in the Proceedings of the National Academy of Sciences October 10, 2013.

"If we are right, this is kind of the 'light at the end of the tunnel' point," said Davis. "After decades of wondering which are the key things we need to understand high-Tc superconductivity and which are the peripheral things, we think we have identified what the essential elements are."

Said Lee, "The next step is to be able to predict which other materials will have these essential elements that will drive high Tc superconductivity-and that ability is still under development."

The role of magnetism

In all known types of high-Tc superconductors-copper-based (cuprate), iron-based, and so-called heavy fermion compounds-superconductivity emerges from the "extinction" of antiferromagnetism, the ordered arrangement of electrons on adjacent atoms having anti-aligned spin directions. Electrons arrayed like tiny magnets in this alternating spin pattern are at their lowest energy state, but this antiferromagnetic order is not beneficial to superconductivity.

However if the interactions between electrons that cause antiferromagnetic order can be maintained while the actual order itself is prevented, then superconductivity can appear. "In this situation, whenever one electron approaches another electron, it tries to anti-align its magnetic state," Davis said. Even if the electrons never achieve antiferromagnetic order, these antiferromagnetic interactions exert the dominant influence on the behavior of the material. "This antiferromagnetic influence is universal across all these types of materials," Davis said.

Many scientists have proposed that these antiferromagnetic interactions play a role in the ability of electrons to eventually pair up with anti-aligned spins-a condition necessary for them to carry current with no resistance. The complicating factor has been the existence of many different types of "intertwined" electronic phases that also emerge in the different types of high-Tc superconductors-sometimes appearing to compete with superconductivity and sometimes coexisting with it.

Intertwined phases

In the cuprates, for example, regions of antiferromagnetic alignment can alternate with "holes" (vacancies formerly occupied by electrons), giving these materials a "striped" pattern of charge density waves [http://www.bnl.gov/newsroom/news.php?a=1187]. In some instances this striped phase can be disrupted by another phase that results in distortions of the stripes [http://www.bnl.gov/newsroom/news.php?a=11307]. In iron-based superconductors, Davis' experiments revealed a nematic liquid-crystal-like phase [http://www.bnl.gov/newsroom/news.php?a=11061]. And in the heavy fermion superconductors, other exotic electronic states occur [http://www.bnl.gov/newsroom/news.php?a=11559].

"When so many intertwined phases were discovered in the cuprates, I was strongly discouraged because I thought, 'How are we going to understand all these phases?'" said Lee. But after the discovery of the iron-based superconductors about five years ago, and their similarities with the cuprates, Lee began to believe there must be some common factor. "Séamus was thinking along a similar line experimentally," he said.

In the current paper, Davis and Lee propose and demonstrate within a simple model that antiferromagnetic electron interactions can drive both superconductivity and the various intertwined phases across different families of high-Tc superconductors. These intertwined phases and the emergence of superconductivity, they say, can be explained by how the antiferromagnetic influence interacts with another variable in their theoretical description, namely the "Fermi surface topology."

"The Fermi surface is a property of all metals and provides a 'fingerprint' of the specific arrangements of electrons that are free to move that is characteristic of each compound," Davis said. "It is controlled by how many electrons are in the crystal, and by the symmetry of the crystal, among other things, so it is quite different in different materials."

The theory developed by Lee incorporates the overarching antiferromagnetic electron interactions and the known differences in Fermi surface from material to material. Using calculations to "dial up" the strength of the magnetic interactions or vary the Fermi surface characteristics, the theory can predict the types of electronic phases that should emerge up to and including the superconductivity for all those different conditions.

"The basic assumption of our theory is that when we rip away all the complicated intertwined phases, underneath there is an ordinary metal," said Lee. "It is the antiferromagnetic interactions in this metal that make the electrons want to form the various states. The complex behavior originates from the system fluctuating from one state to another, e.g., from superconductor to charge density waves to nematic order. It is the antiferromagnetic interaction acting on the underlying simple metal that causes all the complexity."

"So far this theory has correctly produced all the electronic phases that we have observed in each type of strongly correlated superconductor," Davis said.

The next step is to search through new materials and use the theory to identify which should operate in similar ways-and then put them to the test to see if they follow the predictions.

"It is one thing to say, 'If we have the key ingredients, then a material is likely to exhibit high Tc superconductivity.' It is quite another thing to know which materials will have these key characteristics,'" Lee said.

If the search pays off, it could lead to the identification or development of superconductors that can be used even more effectively than those that are known today-potentially transforming our energy landscape.

This research was funded by the DOE Office of Science, in part through the Center for Emergent Superconductivity, a DOE-funded Energy Frontier Research Center at Brookhaven National Laboratory.

DOE's Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov

####

About Brookhaven National Laboratory
One of ten national laboratories overseen and primarily funded by the Office of Science of the U.S. Department of Energy (DOE), Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. Brookhaven is operated and managed for DOE's Office of Science by Brookhaven Science Associates, a limited-liability company founded by the Research Foundation for the State University of New York on behalf of Stony Brook University, the largest academic user of Laboratory facilities, and Battelle, a nonprofit applied science and technology organization.

For more information, please click here

Contacts:
Karen McNulty Walsh
(631) 344-8350

or
Peter Genzer
(631) 344-3174

Copyright © Brookhaven National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Scientific paper: "Concepts relating magnetic interactions, intertwined electronic orders, and strongly correlated superconductivity"

Related News Press

News and information

Research accelerates quest for quicker, longer-lasting electronics: UC Riverside-led research makes topological insulators magnetic well above room temperatures June 25th, 2017

U.S. Air Force Research Lab Taps IBM to Build Brain-Inspired AI Supercomputing System: Equal to 64 million neurons, new neurosynaptic supercomputing system will power complex AI tasks at unprecedented speed and energy efficiency June 23rd, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Enhanced photocatalytic activity by Cu2O nanoparticles integrated H2Ti3O7 nanotubes June 21st, 2017

Laboratories

Alloying materials of different structures offers new tool for controlling properties June 19th, 2017

Development of low-dimensional nanomaterials could revolutionize future technologies June 15th, 2017

X-ray Study Reveals Way to Control Molecular Vibrations that Transmit Heat: Findings open new pathway for "tuning" materials to ease or insulate against the flow of heat, sound, and other forms of energy June 7th, 2017

Scientists Design Molecular System for Artificial Photosynthesis: System is designed to mimic key functions of the photosynthetic center in green plants to convert solar energy into chemical energy stored by hydrogen fuel June 2nd, 2017

NREL’s Advanced Atomic Layer Deposition Enables Lithium-Ion Battery Technology: May 10th, 2017

Physics

In atomic propellers, quantum phenomena can mimic everyday physics June 1st, 2017

Unveiling the quantum necklace: Researchers simulate quantum necklace-like structures in superfluids May 26th, 2017

Ultracold atom waves may shed light on rogue ocean killers: Rice quantum experiments probe underlying physics of rogue ocean waves April 27th, 2017

Geoffrey Beach: Drawn to explore magnetism: Materials researcher is working on the magnetic memory of the future April 25th, 2017

NIST physicists show ion pairs perform enhanced 'spooky action' March 30th, 2017

Superconductivity

Ultracold atom waves may shed light on rogue ocean killers: Rice quantum experiments probe underlying physics of rogue ocean waves April 27th, 2017

Govt.-Legislation/Regulation/Funding/Policy

Research accelerates quest for quicker, longer-lasting electronics: UC Riverside-led research makes topological insulators magnetic well above room temperatures June 25th, 2017

U.S. Air Force Research Lab Taps IBM to Build Brain-Inspired AI Supercomputing System: Equal to 64 million neurons, new neurosynaptic supercomputing system will power complex AI tasks at unprecedented speed and energy efficiency June 23rd, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Tiny bubbles provide tremendous propulsion in new microparticles research-Ben-Gurion U. June 21st, 2017

Discoveries

Research accelerates quest for quicker, longer-lasting electronics: UC Riverside-led research makes topological insulators magnetic well above room temperatures June 25th, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Tiny bubbles provide tremendous propulsion in new microparticles research-Ben-Gurion U. June 21st, 2017

Enhanced photocatalytic activity by Cu2O nanoparticles integrated H2Ti3O7 nanotubes June 21st, 2017

Announcements

Research accelerates quest for quicker, longer-lasting electronics: UC Riverside-led research makes topological insulators magnetic well above room temperatures June 25th, 2017

U.S. Air Force Research Lab Taps IBM to Build Brain-Inspired AI Supercomputing System: Equal to 64 million neurons, new neurosynaptic supercomputing system will power complex AI tasks at unprecedented speed and energy efficiency June 23rd, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Enhanced photocatalytic activity by Cu2O nanoparticles integrated H2Ti3O7 nanotubes June 21st, 2017

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Research accelerates quest for quicker, longer-lasting electronics: UC Riverside-led research makes topological insulators magnetic well above room temperatures June 25th, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Tiny bubbles provide tremendous propulsion in new microparticles research-Ben-Gurion U. June 21st, 2017

Enhanced photocatalytic activity by Cu2O nanoparticles integrated H2Ti3O7 nanotubes June 21st, 2017

Research partnerships

Research accelerates quest for quicker, longer-lasting electronics: UC Riverside-led research makes topological insulators magnetic well above room temperatures June 25th, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Alloying materials of different structures offers new tool for controlling properties June 19th, 2017

Learning with light: New system allows optical “deep learning”: Neural networks could be implemented more quickly using new photonic technology June 12th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project