Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > A Grand Unified Theory of Exotic Superconductivity? Scientists introduce a general theoretical approach that describes all known forms of high-temperature superconductivity and their "intertwined" phases

Séamus Davis
Séamus Davis

Abstract:
Years of experiments on various types of high-temperature (high-Tc) superconductors-materials that offer hope for energy-saving applications such as zero-loss electrical power lines-have turned up an amazing array of complex behaviors among the electrons that in some instances pair up to carry current with no resistance, and in others stop the flow of current in its tracks. The variety of these exotic electronic phenomena is a key reason it has been so hard to identify unifying concepts to explain why high-Tc superconductivity occurs in these promising materials.

A Grand Unified Theory of Exotic Superconductivity? Scientists introduce a general theoretical approach that describes all known forms of high-temperature superconductivity and their "intertwined" phases

Upton, NY | Posted on October 17th, 2013

Now Séamus Davis, a physicist who's conducted experiments on many of these materials at the U.S. Department of Energy's (DOE) Brookhaven National Laboratory and Cornell University, and Dung-Hai Lee, a theorist at DOE's Lawrence Berkeley National Laboratory and the University of California, Berkeley, postulate a set of key principles for understanding the superconductivity and the variety of "intertwined" electronic phenomena that applies to all the families of high-Tc superconductors. They describe these general concepts in a paper published in the Proceedings of the National Academy of Sciences October 10, 2013.

"If we are right, this is kind of the 'light at the end of the tunnel' point," said Davis. "After decades of wondering which are the key things we need to understand high-Tc superconductivity and which are the peripheral things, we think we have identified what the essential elements are."

Said Lee, "The next step is to be able to predict which other materials will have these essential elements that will drive high Tc superconductivity-and that ability is still under development."

The role of magnetism

In all known types of high-Tc superconductors-copper-based (cuprate), iron-based, and so-called heavy fermion compounds-superconductivity emerges from the "extinction" of antiferromagnetism, the ordered arrangement of electrons on adjacent atoms having anti-aligned spin directions. Electrons arrayed like tiny magnets in this alternating spin pattern are at their lowest energy state, but this antiferromagnetic order is not beneficial to superconductivity.

However if the interactions between electrons that cause antiferromagnetic order can be maintained while the actual order itself is prevented, then superconductivity can appear. "In this situation, whenever one electron approaches another electron, it tries to anti-align its magnetic state," Davis said. Even if the electrons never achieve antiferromagnetic order, these antiferromagnetic interactions exert the dominant influence on the behavior of the material. "This antiferromagnetic influence is universal across all these types of materials," Davis said.

Many scientists have proposed that these antiferromagnetic interactions play a role in the ability of electrons to eventually pair up with anti-aligned spins-a condition necessary for them to carry current with no resistance. The complicating factor has been the existence of many different types of "intertwined" electronic phases that also emerge in the different types of high-Tc superconductors-sometimes appearing to compete with superconductivity and sometimes coexisting with it.

Intertwined phases

In the cuprates, for example, regions of antiferromagnetic alignment can alternate with "holes" (vacancies formerly occupied by electrons), giving these materials a "striped" pattern of charge density waves [http://www.bnl.gov/newsroom/news.php?a=1187]. In some instances this striped phase can be disrupted by another phase that results in distortions of the stripes [http://www.bnl.gov/newsroom/news.php?a=11307]. In iron-based superconductors, Davis' experiments revealed a nematic liquid-crystal-like phase [http://www.bnl.gov/newsroom/news.php?a=11061]. And in the heavy fermion superconductors, other exotic electronic states occur [http://www.bnl.gov/newsroom/news.php?a=11559].

"When so many intertwined phases were discovered in the cuprates, I was strongly discouraged because I thought, 'How are we going to understand all these phases?'" said Lee. But after the discovery of the iron-based superconductors about five years ago, and their similarities with the cuprates, Lee began to believe there must be some common factor. "Séamus was thinking along a similar line experimentally," he said.

In the current paper, Davis and Lee propose and demonstrate within a simple model that antiferromagnetic electron interactions can drive both superconductivity and the various intertwined phases across different families of high-Tc superconductors. These intertwined phases and the emergence of superconductivity, they say, can be explained by how the antiferromagnetic influence interacts with another variable in their theoretical description, namely the "Fermi surface topology."

"The Fermi surface is a property of all metals and provides a 'fingerprint' of the specific arrangements of electrons that are free to move that is characteristic of each compound," Davis said. "It is controlled by how many electrons are in the crystal, and by the symmetry of the crystal, among other things, so it is quite different in different materials."

The theory developed by Lee incorporates the overarching antiferromagnetic electron interactions and the known differences in Fermi surface from material to material. Using calculations to "dial up" the strength of the magnetic interactions or vary the Fermi surface characteristics, the theory can predict the types of electronic phases that should emerge up to and including the superconductivity for all those different conditions.

"The basic assumption of our theory is that when we rip away all the complicated intertwined phases, underneath there is an ordinary metal," said Lee. "It is the antiferromagnetic interactions in this metal that make the electrons want to form the various states. The complex behavior originates from the system fluctuating from one state to another, e.g., from superconductor to charge density waves to nematic order. It is the antiferromagnetic interaction acting on the underlying simple metal that causes all the complexity."

"So far this theory has correctly produced all the electronic phases that we have observed in each type of strongly correlated superconductor," Davis said.

The next step is to search through new materials and use the theory to identify which should operate in similar ways-and then put them to the test to see if they follow the predictions.

"It is one thing to say, 'If we have the key ingredients, then a material is likely to exhibit high Tc superconductivity.' It is quite another thing to know which materials will have these key characteristics,'" Lee said.

If the search pays off, it could lead to the identification or development of superconductors that can be used even more effectively than those that are known today-potentially transforming our energy landscape.

This research was funded by the DOE Office of Science, in part through the Center for Emergent Superconductivity, a DOE-funded Energy Frontier Research Center at Brookhaven National Laboratory.

DOE's Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov

####

About Brookhaven National Laboratory
One of ten national laboratories overseen and primarily funded by the Office of Science of the U.S. Department of Energy (DOE), Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. Brookhaven is operated and managed for DOE's Office of Science by Brookhaven Science Associates, a limited-liability company founded by the Research Foundation for the State University of New York on behalf of Stony Brook University, the largest academic user of Laboratory facilities, and Battelle, a nonprofit applied science and technology organization.

For more information, please click here

Contacts:
Karen McNulty Walsh
(631) 344-8350

or
Peter Genzer
(631) 344-3174

Copyright © Brookhaven National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Scientific paper: "Concepts relating magnetic interactions, intertwined electronic orders, and strongly correlated superconductivity"

Related News Press

Physics

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

'Sudden death' of quantum fluctuations defies current theories of superconductivity: Study challenges the conventional wisdom of superconducting quantum transitions January 12th, 2024

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Superconductivity

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

Laboratories

A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Govt.-Legislation/Regulation/Funding/Policy

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Research partnerships

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

'Sudden death' of quantum fluctuations defies current theories of superconductivity: Study challenges the conventional wisdom of superconducting quantum transitions January 12th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project