Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Defining the graphene family tree: Journal Carbon publishes a recommended nomenclature for 2D carbon forms

Abstract:
There has been an intense research interest in all two-dimensional (2D) forms of carbon since Geim and Novoselov's discovery of graphene in 2004. But as the number of such publications rise, so does the level of inconsistency in naming the material of interest. The isolated, single-atom-thick sheet universally referred to as "graphene" may have a clear definition, but when referring to related 2D sheet-like or flake-like carbon forms, many authors have simply defined their own terms to describe their product.

Defining the graphene family tree: Journal Carbon publishes a recommended nomenclature for 2D carbon forms

Oxford, UK | Posted on October 16th, 2013

This has led to confusion within the literature, where terms are multiply-defined, or incorrectly used. The Editorial Board of Carbon has therefore published the first recommended nomenclature for 2D carbon forms.

The editorial team spent eight months working on setting the definitions. They believe that agreeing on a rational scientific nomenclature could enable more rapid development in the field, and with a "higher degree of common understanding". Editor-in-Chief of Carbon, Professor Robert Hurt (Institute for Molecular and Nanoscale Innovation, School of Engineering, Brown University, USA) succinctly summarizes the need for this work with the phrase: "Precise names promote precise ideas."

A series of basic guiding principles to define the terms was used in the study, where possible making use of established definitions, and clarifying rather than replacing existing terms. The study also recognizes that researchers will want to continue using the word "graphene" in publications, and so have recommended "graphene materials" as the overarching phrase to describe 2D carbons. In this way, the publication offers itself as a practical guide for naming such materials, for carbon scientists in all fields and at all stages in their careers.

One proposal is that all definitions of graphene materials should go beyond crystallography, and should include morphological descriptors for shape and size - namely the thickness (layer number), lateral dimensions and in-plane shape of these carbon layers.

To move graphene materials beyond the early discovery phase and into applications, internationally-recognized definitions of each carbon form will be needed. In the 1990s, the lack of agreed definitions for nanofibers, nanorods and nanotubes led to several International Standards on the topic, which, when published, brought consistency to the field.

"This study is a great way to open the discussion on graphene terminology, and welcomes any formal standardization efforts for 2D carbons in the future," concludes Prof Hurt c "We would be delighted if the community at large saw sufficient value in the recommendations to use them more broadly."

####

About Elsevier
Elsevier is a world-leading provider of scientific, technical and medical information products and services. The company works in partnership with the global science and health communities to publish more than 2,000 journals, including The Lancet and Cell, and close to 20,000 book titles, including major reference works from Mosby and Saunders. Elsevier's online solutions include ScienceDirect, Scopus, SciVal, Reaxys, ClinicalKey and Mosby's Suite, which enhance the productivity of science and health professionals, helping research and health care institutions deliver better outcomes more cost-effectively.

A global business headquartered in Amsterdam, Elsevier employs 7,000 people worldwide. The company is part of Reed Elsevier Group PLC, a world leading provider of professional information solutions. The group employs more than 30,000 people, including more than 15,000 in North America. Reed Elsevier Group PLC is owned equally by two parent companies, Reed Elsevier PLC and Reed Elsevier NV. Their shares are traded on the London, Amsterdam and New York Stock Exchanges using the following ticker symbols: London: REL; Amsterdam: REN; New York: RUK and ENL.

About Carbon

An International Journal Founded in Conjunction with the American Carbon Society

The journal Carbon is an international multidisciplinary forum for communicating scientific advances in the field of carbon materials and carbon nanomaterials. The journal reports significant new findings related to the formation, structure, properties, behaviors, and technological applications of carbons, which are a broad class of ordered or disordered solid phases composed primarily of elemental carbon. These materials can be either synthetic or of natural origin, and include, but are not limited to, graphene and graphene-oxide, carbon nanotubes, carbon fibers and filaments, graphite, porous carbons, pyrolytic carbon, glassy carbon, carbon black, diamond and diamond-like carbon, fullerenes, and chars. Papers on composites will be considered if the carbon component is a major focus of the paper's scientific content. Papers on organic substances may be considered if they are precursors for such carbon materials. Relevant application areas for carbon materials include, but are not limited to, electronic and photonic devices, structural and thermal applications, smart materials and systems, energy storage and conversion, catalysis, environmental protection, and biology and medicine.

For more information, please click here

Contacts:
Stewart Bland

44-186-584-3124

Copyright © Elsevier

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

This article is "All in the graphene family – A recommended nomenclature for two-dimensional carbon materials" by Alberto Bianco, Hui-Ming Cheng, Toshiaki Enoki, Yury Gogotsi, Robert H. Hurt, Nikhil Koratkar, Takashi Kyotani, Marc Monthioux, Chong Rae Park, Juan M.D. Tascon and Jin Zhang. It appears in Carbon, Volume 65, December 2013, Pages 1-6 (2013) published by Elsevier. The article is available for free at:

Related News Press

News and information

Device invented at Johns Hopkins provides up-close look at cancer on the move: Microscopic view of metastasis could give insight about how to keep cancer in check October 31st, 2014

First Observation of Electronic Structure in Ag-Rh Alloy Nanoparticles Having Hydrogen Absorbing: Storage Property –Attempting to solve the mystery of why Ag-Rh alloy nanoparticles have a similar property to Pd– October 30th, 2014

Iranians Present Model to Predict Photocatalytic Process in Removal of Pollutants October 30th, 2014

Production of Biocompatible Polymers in Iran October 30th, 2014

Graphene

Haydale Secures Exclusive Development and Supply Agreement with Tantec A/S: New reactors to be built and commissioned by Tantec A/S represent another step forward towards the commercialisation of graphene October 24th, 2014

Nitrogen Doped Graphene Characterized by Iranian, Russian, German Scientists October 21st, 2014

Graphenea opens US branch October 16th, 2014

Charged graphene gives DNA a stage to perform molecular gymnastics October 9th, 2014

Announcements

Device invented at Johns Hopkins provides up-close look at cancer on the move: Microscopic view of metastasis could give insight about how to keep cancer in check October 31st, 2014

First Observation of Electronic Structure in Ag-Rh Alloy Nanoparticles Having Hydrogen Absorbing: Storage Property –Attempting to solve the mystery of why Ag-Rh alloy nanoparticles have a similar property to Pd– October 30th, 2014

Iranians Present Model to Predict Photocatalytic Process in Removal of Pollutants October 30th, 2014

Production of Biocompatible Polymers in Iran October 30th, 2014

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals

Device invented at Johns Hopkins provides up-close look at cancer on the move: Microscopic view of metastasis could give insight about how to keep cancer in check October 31st, 2014

First Observation of Electronic Structure in Ag-Rh Alloy Nanoparticles Having Hydrogen Absorbing: Storage Property –Attempting to solve the mystery of why Ag-Rh alloy nanoparticles have a similar property to Pd– October 30th, 2014

Iranians Present Model to Predict Photocatalytic Process in Removal of Pollutants October 30th, 2014

Production of Biocompatible Polymers in Iran October 30th, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE