Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Bending world’s thinnest glass shows atoms’ dance

Elastic and plastic deformation in ring exchange. (A) Cartoon models of the 2D silica structure. (B-E) TEM images showing a ring rearrangement that transforms a 5-7-5-7 cluster into a 6-6-6-6 cluster. (G) Larger view of the region from part A, and (H) corresponding first-to-last frame displacement map. (H) The region between the bond rearrangement and the edge of the sheet exhibits strong local rotation. Scale bars 1 nm.
Elastic and plastic deformation in ring exchange. (A) Cartoon models of the 2D silica structure. (B-E) TEM images showing a ring rearrangement that transforms a 5-7-5-7 cluster into a 6-6-6-6 cluster. (G) Larger view of the region from part A, and (H) corresponding first-to-last frame displacement map. (H) The region between the bond rearrangement and the edge of the sheet exhibits strong local rotation. Scale bars 1 nm.

Abstract:
Watch what happens when the world's thinnest sheet of glass discovered by researchers from Cornell University and the University of Ulm featured in the Guinness Book of World Records, breaks. Well, not exactly breaks, but close to it. A research team led by David A. Muller, professor of applied and engineering physics and co-director of the Kavli Institute at Cornell for Nanoscale Science and Ute Kaiser from the University of Ulm, who both led the previous study on atomically thin glass, has used an electron microscope to bend, deform and melt the one molecule-thick glass. These are all things that happen just before glass shatters, and for the first time, the researchers have directly imaged such deformations and the resulting "dance" of rearranging atoms in silica glass, which forms the basis for everyday windowpanes. This newest work is published Oct. 11 in the journal Science.

Bending world’s thinnest glass shows atoms’ dance

Ulm, Germany | Posted on October 16th, 2013

Glass, what's known as an amorphous solid because its atoms are rigid like a crystal but disorderly like a liquid, is notoriously hard to study, said Pinshane Huang, a graduate student working with Muller and the paper's first author.

"Now, instead of just looking at its structure, we are looking at its dynamics and how it bends and breaks," Huang said. "This thinnest-ever glass gives us a new way of looking at glasses at the single-atom level, and how they break atom by atom." Added Muller: "No one has ever before been able to see the rearrangements of atoms in a glass when you push on it."

Sophisticated theories describe how these atoms behave when bent or broken, but only on the computer, said Jim Sethna, professor of physics and paper co-author. "Lots of people have made computer simulations, but this is the experimental realization of what the glass community has been looking for a long, long time."

With collaborators at both Cornell and Germany's University of Ulm, the researchers imaged the thin glass with two types of transmission electron microscopes. The electron beam heated up the glass, causing visible structural deformation at the interfaces between liquid and solid phases. Muller described the electrons as "tickling" the glass in order to deform it and simultaneously image what was happening.

To do their study, the researchers borrowed longstanding theories and predictions from scientists who study colloids - suspensions of particles in liquid that are representative of atoms but can be observed directly because they are larger.

"A lot of what we did was to use their methods and tracking codes and ideas, and now that we can actually see atoms in a glass, we tried it with real atoms," Huang said.

The work was supported by the National Science Foundation, Cornell Center for Materials Research and Air Force Office of Science Research.

####

About University of Ulm
Founded in 1967, the University of Ulm enjoys an excellent reputation for innovative research, interdisciplinarity and successful training. Its 4 faculties (Engineering and Computer Science; Mathematics and Economics; Medicine; Natural Sciences) support some 9,500 students. The university plays a central role of the Science City of Ulm, not only as the region's biggest educational facility, but also as an important motor for R&D.
The research profile of the youngest university in the state of Baden-Württemberg is characterized by its focus on life sciences and medicine, bio-, nano- and energy-materials, financial services and their mathematical methodology as well as communications-, information- and quantum-technology.

For more information, please click here

Contacts:
Annika Bingmann


Contact in Germany/ University of Ulm:

Prof. Dr. Ute Kaiser

phone +49 (0)731 / 50 - 229 50
mobil phone number can be requested from +49 (0)731 / 50 - 220 24;

Contact – USA Cornell:

Anne Ju
(607) 255-9735

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Full bibliographic information

Related News Press

News and information

Cool Calculations for Cold Atoms: New theory of universal three-body encounters September 2nd, 2014

Accounting for Biological Aggregation in Heating and Imaging of Magnetic Nanoparticles September 2nd, 2014

Engineers develop new sensor to detect tiny individual nanoparticles September 2nd, 2014

Future solar panels September 2nd, 2014

Imaging

Accounting for Biological Aggregation in Heating and Imaging of Magnetic Nanoparticles September 2nd, 2014

Govt.-Legislation/Regulation/Funding/Policy

Cool Calculations for Cold Atoms: New theory of universal three-body encounters September 2nd, 2014

UO-Berkeley Lab unveil new nano-sized synthetic scaffolding technique: Oil-and-water approach from Richmond's UO lab to spark new line of versatile peptoid nanosheets September 2nd, 2014

Accounting for Biological Aggregation in Heating and Imaging of Magnetic Nanoparticles September 2nd, 2014

Engineers develop new sensor to detect tiny individual nanoparticles September 2nd, 2014

Discoveries

New synthesis method may shape future of nanostructures, clean energy: Findings advance efficient solar spliting of water into hydrogen fuel September 2nd, 2014

Accounting for Biological Aggregation in Heating and Imaging of Magnetic Nanoparticles September 2nd, 2014

Engineers develop new sensor to detect tiny individual nanoparticles September 2nd, 2014

Future solar panels September 2nd, 2014

Materials/Metamaterials

UO-Berkeley Lab unveil new nano-sized synthetic scaffolding technique: Oil-and-water approach from Richmond's UO lab to spark new line of versatile peptoid nanosheets September 2nd, 2014

Fonon Announces 3D Metal Sintering Technology: Emerging Additive Nano Powder Manufacturing Technology August 28th, 2014

SouthWest NanoTechnologies CEO Dave Arthur to Discuss “Carbon Nanotubes and Automotive Applications” at The Automotive Composites Conference and Expo 2014 (ACCE2014) August 28th, 2014

Nanodiamonds Are Forever: A UCSB professor’s research examines 13,000-year-old nanodiamonds from multiple locations across three continents August 27th, 2014

Announcements

New synthesis method may shape future of nanostructures, clean energy: Findings advance efficient solar spliting of water into hydrogen fuel September 2nd, 2014

Accounting for Biological Aggregation in Heating and Imaging of Magnetic Nanoparticles September 2nd, 2014

Engineers develop new sensor to detect tiny individual nanoparticles September 2nd, 2014

Future solar panels September 2nd, 2014

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals

UO-Berkeley Lab unveil new nano-sized synthetic scaffolding technique: Oil-and-water approach from Richmond's UO lab to spark new line of versatile peptoid nanosheets September 2nd, 2014

New synthesis method may shape future of nanostructures, clean energy: Findings advance efficient solar spliting of water into hydrogen fuel September 2nd, 2014

Engineers develop new sensor to detect tiny individual nanoparticles September 2nd, 2014

Future solar panels September 2nd, 2014

Tools

Accounting for Biological Aggregation in Heating and Imaging of Magnetic Nanoparticles September 2nd, 2014

Raman Whispering Gallery Detects Nanoparticles September 1st, 2014

New analytical technology reveals 'nanomechanical' surface traits August 29th, 2014

Ultra-Low Frequency Vibration Isolation Stabilizes Scanning Tunneling Microscopy at UCLA’s Nano-Research Group August 28th, 2014

Military

Engineers develop new sensor to detect tiny individual nanoparticles September 2nd, 2014

Fonon Announces 3D Metal Sintering Technology: Emerging Additive Nano Powder Manufacturing Technology August 28th, 2014

New technique uses fraction of measurements to efficiently find quantum wave functions August 28th, 2014

Introducing the multi-tasking nanoparticle: Versatile particles offer a wide variety of diagnostic and therapeutic applications August 26th, 2014

Research partnerships

Leading European communications companies and research organizations have launched an EU project developing the future 5th Generation cellular mobile networks August 28th, 2014

New technique uses fraction of measurements to efficiently find quantum wave functions August 28th, 2014

The thunder god vine, assisted by nanotechnology, could shake up future cancer treatment: Targeted therapy for hepatocellular carcinoma using nanotechnology August 27th, 2014

Competition for Graphene: Berkeley Lab Researchers Demonstrate Ultrafast Charge Transfer in New Family of 2D Semiconductors August 26th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE