Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Bending world’s thinnest glass shows atoms’ dance

Elastic and plastic deformation in ring exchange. (A) Cartoon models of the 2D silica structure. (B-E) TEM images showing a ring rearrangement that transforms a 5-7-5-7 cluster into a 6-6-6-6 cluster. (G) Larger view of the region from part A, and (H) corresponding first-to-last frame displacement map. (H) The region between the bond rearrangement and the edge of the sheet exhibits strong local rotation. Scale bars 1 nm.
Elastic and plastic deformation in ring exchange. (A) Cartoon models of the 2D silica structure. (B-E) TEM images showing a ring rearrangement that transforms a 5-7-5-7 cluster into a 6-6-6-6 cluster. (G) Larger view of the region from part A, and (H) corresponding first-to-last frame displacement map. (H) The region between the bond rearrangement and the edge of the sheet exhibits strong local rotation. Scale bars 1 nm.

Abstract:
Watch what happens when the world's thinnest sheet of glass discovered by researchers from Cornell University and the University of Ulm featured in the Guinness Book of World Records, breaks. Well, not exactly breaks, but close to it. A research team led by David A. Muller, professor of applied and engineering physics and co-director of the Kavli Institute at Cornell for Nanoscale Science and Ute Kaiser from the University of Ulm, who both led the previous study on atomically thin glass, has used an electron microscope to bend, deform and melt the one molecule-thick glass. These are all things that happen just before glass shatters, and for the first time, the researchers have directly imaged such deformations and the resulting "dance" of rearranging atoms in silica glass, which forms the basis for everyday windowpanes. This newest work is published Oct. 11 in the journal Science.

Bending world’s thinnest glass shows atoms’ dance

Ulm, Germany | Posted on October 16th, 2013

Glass, what's known as an amorphous solid because its atoms are rigid like a crystal but disorderly like a liquid, is notoriously hard to study, said Pinshane Huang, a graduate student working with Muller and the paper's first author.

"Now, instead of just looking at its structure, we are looking at its dynamics and how it bends and breaks," Huang said. "This thinnest-ever glass gives us a new way of looking at glasses at the single-atom level, and how they break atom by atom." Added Muller: "No one has ever before been able to see the rearrangements of atoms in a glass when you push on it."

Sophisticated theories describe how these atoms behave when bent or broken, but only on the computer, said Jim Sethna, professor of physics and paper co-author. "Lots of people have made computer simulations, but this is the experimental realization of what the glass community has been looking for a long, long time."

With collaborators at both Cornell and Germany's University of Ulm, the researchers imaged the thin glass with two types of transmission electron microscopes. The electron beam heated up the glass, causing visible structural deformation at the interfaces between liquid and solid phases. Muller described the electrons as "tickling" the glass in order to deform it and simultaneously image what was happening.

To do their study, the researchers borrowed longstanding theories and predictions from scientists who study colloids - suspensions of particles in liquid that are representative of atoms but can be observed directly because they are larger.

"A lot of what we did was to use their methods and tracking codes and ideas, and now that we can actually see atoms in a glass, we tried it with real atoms," Huang said.

The work was supported by the National Science Foundation, Cornell Center for Materials Research and Air Force Office of Science Research.

####

About University of Ulm
Founded in 1967, the University of Ulm enjoys an excellent reputation for innovative research, interdisciplinarity and successful training. Its 4 faculties (Engineering and Computer Science; Mathematics and Economics; Medicine; Natural Sciences) support some 9,500 students. The university plays a central role of the Science City of Ulm, not only as the region's biggest educational facility, but also as an important motor for R&D.
The research profile of the youngest university in the state of Baden-Württemberg is characterized by its focus on life sciences and medicine, bio-, nano- and energy-materials, financial services and their mathematical methodology as well as communications-, information- and quantum-technology.

For more information, please click here

Contacts:
Annika Bingmann


Contact in Germany/ University of Ulm:

Prof. Dr. Ute Kaiser

phone +49 (0)731 / 50 - 229 50
mobil phone number can be requested from +49 (0)731 / 50 - 220 24;

Contact – USA Cornell:

Anne Ju
(607) 255-9735

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Full bibliographic information

Related News Press

Imaging

Visualizing interacting electrons in a molecule: Scientists at Aalto University and the University of Zurich have succeeded in directly imaging how electrons interact within a single molecule January 26th, 2015

News and information

Nanoparticles Increase Durability of Concrete Decorations in Cold Areas January 26th, 2015

Iranian Researchers Boost Solar Cells Efficiency Using Anti-Aggregates January 26th, 2015

Detection of Heavy Metals in Samples with Naked Eye January 26th, 2015

Engineering self-assembling amyloid fibers January 26th, 2015

Govt.-Legislation/Regulation/Funding/Policy

Nanoshuttle wear and tear: It's the mileage, not the age January 26th, 2015

Visualizing interacting electrons in a molecule: Scientists at Aalto University and the University of Zurich have succeeded in directly imaging how electrons interact within a single molecule January 26th, 2015

The latest fashion: Graphene edges can be tailor-made: Rice University theory shows it should be possible to tune material's properties January 24th, 2015

Scientists 'bend' elastic waves with new metamaterials that could have commercial applications: Materials could benefit imaging and military enhancements such as elastic cloaking January 23rd, 2015

Discoveries

Visualizing interacting electrons in a molecule: Scientists at Aalto University and the University of Zurich have succeeded in directly imaging how electrons interact within a single molecule January 26th, 2015

Electronic circuits with reconfigurable pathways closer to reality January 26th, 2015

Nanoparticles Increase Durability of Concrete Decorations in Cold Areas January 26th, 2015

Iranian Researchers Boost Solar Cells Efficiency Using Anti-Aggregates January 26th, 2015

Materials/Metamaterials

Chromium-centered cycloparaphenylene rings for making functionalized nanocarbons January 26th, 2015

Engineering self-assembling amyloid fibers January 26th, 2015

Toyocolor to Launch New Carbon Nanotube Materials at nano tech 2015 January 24th, 2015

The latest fashion: Graphene edges can be tailor-made: Rice University theory shows it should be possible to tune material's properties January 24th, 2015

Announcements

Nanoparticles Increase Durability of Concrete Decorations in Cold Areas January 26th, 2015

Iranian Researchers Boost Solar Cells Efficiency Using Anti-Aggregates January 26th, 2015

Detection of Heavy Metals in Samples with Naked Eye January 26th, 2015

Engineering self-assembling amyloid fibers January 26th, 2015

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Visualizing interacting electrons in a molecule: Scientists at Aalto University and the University of Zurich have succeeded in directly imaging how electrons interact within a single molecule January 26th, 2015

Electronic circuits with reconfigurable pathways closer to reality January 26th, 2015

Fullerex launches 2015 edition of the Bulk Graphene Pricing Report January 26th, 2015

Nanoparticles Increase Durability of Concrete Decorations in Cold Areas January 26th, 2015

Tools

Visualizing interacting electrons in a molecule: Scientists at Aalto University and the University of Zurich have succeeded in directly imaging how electrons interact within a single molecule January 26th, 2015

Graphene brings quantum effects to electronic circuits January 22nd, 2015

EnvisioNano: An image contest hosted by the National Nanotechnology Initiative (NNI) January 22nd, 2015

New Molecular Beam Epitaxy deposition equipment at the ICN2 January 22nd, 2015

Military

Detection of Heavy Metals in Samples with Naked Eye January 26th, 2015

The latest fashion: Graphene edges can be tailor-made: Rice University theory shows it should be possible to tune material's properties January 24th, 2015

Scientists 'bend' elastic waves with new metamaterials that could have commercial applications: Materials could benefit imaging and military enhancements such as elastic cloaking January 23rd, 2015

Laser-generated surface structures create extremely water-repellent metals: Super-hydrophobic properties could lead to applications in solar panels, sanitation and as rust-free metals January 20th, 2015

Research partnerships

Visualizing interacting electrons in a molecule: Scientists at Aalto University and the University of Zurich have succeeded in directly imaging how electrons interact within a single molecule January 26th, 2015

Promising use of nanodiamonds in delivering cancer drug to kill cancer stem cells: NUS study shows that delivery of Epirubicin by nanodiamonds resulted in a normally lethal dosage of Epirubicin becoming a safe and effective dosage for treatment of liver cancer January 26th, 2015

Wearable sensor clears path to long-term EKG, EMG monitoring January 20th, 2015

Graphene enables all-electrical control of energy flow from light emitters: First signatures of graphene plasmons at telecommunications wavelength revealed January 20th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE