Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Bending world’s thinnest glass shows atoms’ dance

Elastic and plastic deformation in ring exchange. (A) Cartoon models of the 2D silica structure. (B-E) TEM images showing a ring rearrangement that transforms a 5-7-5-7 cluster into a 6-6-6-6 cluster. (G) Larger view of the region from part A, and (H) corresponding first-to-last frame displacement map. (H) The region between the bond rearrangement and the edge of the sheet exhibits strong local rotation. Scale bars 1 nm.
Elastic and plastic deformation in ring exchange. (A) Cartoon models of the 2D silica structure. (B-E) TEM images showing a ring rearrangement that transforms a 5-7-5-7 cluster into a 6-6-6-6 cluster. (G) Larger view of the region from part A, and (H) corresponding first-to-last frame displacement map. (H) The region between the bond rearrangement and the edge of the sheet exhibits strong local rotation. Scale bars 1 nm.

Abstract:
Watch what happens when the world's thinnest sheet of glass discovered by researchers from Cornell University and the University of Ulm featured in the Guinness Book of World Records, breaks. Well, not exactly breaks, but close to it. A research team led by David A. Muller, professor of applied and engineering physics and co-director of the Kavli Institute at Cornell for Nanoscale Science and Ute Kaiser from the University of Ulm, who both led the previous study on atomically thin glass, has used an electron microscope to bend, deform and melt the one molecule-thick glass. These are all things that happen just before glass shatters, and for the first time, the researchers have directly imaged such deformations and the resulting "dance" of rearranging atoms in silica glass, which forms the basis for everyday windowpanes. This newest work is published Oct. 11 in the journal Science.

Bending world’s thinnest glass shows atoms’ dance

Ulm, Germany | Posted on October 16th, 2013

Glass, what's known as an amorphous solid because its atoms are rigid like a crystal but disorderly like a liquid, is notoriously hard to study, said Pinshane Huang, a graduate student working with Muller and the paper's first author.

"Now, instead of just looking at its structure, we are looking at its dynamics and how it bends and breaks," Huang said. "This thinnest-ever glass gives us a new way of looking at glasses at the single-atom level, and how they break atom by atom." Added Muller: "No one has ever before been able to see the rearrangements of atoms in a glass when you push on it."

Sophisticated theories describe how these atoms behave when bent or broken, but only on the computer, said Jim Sethna, professor of physics and paper co-author. "Lots of people have made computer simulations, but this is the experimental realization of what the glass community has been looking for a long, long time."

With collaborators at both Cornell and Germany's University of Ulm, the researchers imaged the thin glass with two types of transmission electron microscopes. The electron beam heated up the glass, causing visible structural deformation at the interfaces between liquid and solid phases. Muller described the electrons as "tickling" the glass in order to deform it and simultaneously image what was happening.

To do their study, the researchers borrowed longstanding theories and predictions from scientists who study colloids - suspensions of particles in liquid that are representative of atoms but can be observed directly because they are larger.

"A lot of what we did was to use their methods and tracking codes and ideas, and now that we can actually see atoms in a glass, we tried it with real atoms," Huang said.

The work was supported by the National Science Foundation, Cornell Center for Materials Research and Air Force Office of Science Research.

####

About University of Ulm
Founded in 1967, the University of Ulm enjoys an excellent reputation for innovative research, interdisciplinarity and successful training. Its 4 faculties (Engineering and Computer Science; Mathematics and Economics; Medicine; Natural Sciences) support some 9,500 students. The university plays a central role of the Science City of Ulm, not only as the region's biggest educational facility, but also as an important motor for R&D.
The research profile of the youngest university in the state of Baden-Württemberg is characterized by its focus on life sciences and medicine, bio-, nano- and energy-materials, financial services and their mathematical methodology as well as communications-, information- and quantum-technology.

For more information, please click here

Contacts:
Annika Bingmann


Contact in Germany/ University of Ulm:

Prof. Dr. Ute Kaiser

phone +49 (0)731 / 50 - 229 50
mobil phone number can be requested from +49 (0)731 / 50 - 220 24;

Contact – USA Cornell:

Anne Ju
(607) 255-9735

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Full bibliographic information

Related News Press

News and information

New nano approach could cut dose of leading HIV treatment in half February 24th, 2017

Atom-scale oxidation mechanism of nanoparticles helps develop anti-corrosion materials February 24th, 2017

Atomic force imaging used to study nematodes: KFU bionanotechnology lab (head - Dr. Rawil Fakhrullin) has obtained 3-D images of nematodes' cuticles February 23rd, 2017

Particle Works creates range of high performance quantum dots February 23rd, 2017

Imaging

Atomic force imaging used to study nematodes: KFU bionanotechnology lab (head - Dr. Rawil Fakhrullin) has obtained 3-D images of nematodes' cuticles February 23rd, 2017

JPK selects compact tensile stage from Deben for their NanoWizard® AFM platform to broaden capabilities for materials characterisation February 22nd, 2017

Govt.-Legislation/Regulation/Funding/Policy

Atom-scale oxidation mechanism of nanoparticles helps develop anti-corrosion materials February 24th, 2017

Atomic force imaging used to study nematodes: KFU bionanotechnology lab (head - Dr. Rawil Fakhrullin) has obtained 3-D images of nematodes' cuticles February 23rd, 2017

Molecular phenomenon discovered by advanced NMR facility: Cutting edge technology has shown a molecule self-assembling into different forms when passing between solution state to solid state, and back again - a curious phenomenon in science - says research by the University of Wa February 22nd, 2017

'Lossless' metamaterial could boost efficiency of lasers and other light-based devices February 20th, 2017

Discoveries

New nano approach could cut dose of leading HIV treatment in half February 24th, 2017

Atom-scale oxidation mechanism of nanoparticles helps develop anti-corrosion materials February 24th, 2017

Atomic force imaging used to study nematodes: KFU bionanotechnology lab (head - Dr. Rawil Fakhrullin) has obtained 3-D images of nematodes' cuticles February 23rd, 2017

Molecular phenomenon discovered by advanced NMR facility: Cutting edge technology has shown a molecule self-assembling into different forms when passing between solution state to solid state, and back again - a curious phenomenon in science - says research by the University of Wa February 22nd, 2017

Materials/Metamaterials

Atom-scale oxidation mechanism of nanoparticles helps develop anti-corrosion materials February 24th, 2017

EmTech Asia breaks new barriers with potential applications of space exploration with NASA and MIT February 22nd, 2017

Molecular phenomenon discovered by advanced NMR facility: Cutting edge technology has shown a molecule self-assembling into different forms when passing between solution state to solid state, and back again - a curious phenomenon in science - says research by the University of Wa February 22nd, 2017

Tiny nanoclusters could solve big problems for lithium-ion batteries February 21st, 2017

Announcements

New nano approach could cut dose of leading HIV treatment in half February 24th, 2017

Atom-scale oxidation mechanism of nanoparticles helps develop anti-corrosion materials February 24th, 2017

Atomic force imaging used to study nematodes: KFU bionanotechnology lab (head - Dr. Rawil Fakhrullin) has obtained 3-D images of nematodes' cuticles February 23rd, 2017

Particle Works creates range of high performance quantum dots February 23rd, 2017

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

New nano approach could cut dose of leading HIV treatment in half February 24th, 2017

Atom-scale oxidation mechanism of nanoparticles helps develop anti-corrosion materials February 24th, 2017

Molecular phenomenon discovered by advanced NMR facility: Cutting edge technology has shown a molecule self-assembling into different forms when passing between solution state to solid state, and back again - a curious phenomenon in science - says research by the University of Wa February 22nd, 2017

Tiny nanoclusters could solve big problems for lithium-ion batteries February 21st, 2017

Tools

Atomic force imaging used to study nematodes: KFU bionanotechnology lab (head - Dr. Rawil Fakhrullin) has obtained 3-D images of nematodes' cuticles February 23rd, 2017

JPK selects compact tensile stage from Deben for their NanoWizard® AFM platform to broaden capabilities for materials characterisation February 22nd, 2017

Molecular phenomenon discovered by advanced NMR facility: Cutting edge technology has shown a molecule self-assembling into different forms when passing between solution state to solid state, and back again - a curious phenomenon in science - says research by the University of Wa February 22nd, 2017

Strem Chemicals and Dotz Nano Ltd. Sign Distribution Agreement for Graphene Quantum Dots Collaboration February 21st, 2017

Military

'Lossless' metamaterial could boost efficiency of lasers and other light-based devices February 20th, 2017

Engineers shrink microscope to dime-sized device February 17th, 2017

Graphene foam gets big and tough: Rice University's nanotube-reinforced material can be shaped, is highly conductive February 13th, 2017

Meta-lenses bring benchtop performance to small, hand-held spectrometer: Game-changing nanostructure-based lenses allow smaller devices, increased functionality February 9th, 2017

Research partnerships

Molecular phenomenon discovered by advanced NMR facility: Cutting edge technology has shown a molecule self-assembling into different forms when passing between solution state to solid state, and back again - a curious phenomenon in science - says research by the University of Wa February 22nd, 2017

Graphene foam gets big and tough: Rice University's nanotube-reinforced material can be shaped, is highly conductive February 13th, 2017

Cedars-Sinai, UCLA Scientists Use New ‘Blood Biopsies’ With Experimental Device to Speed Cancer Diagnosis and Predict Disease Spread: Leading-Edge Research Is Part of National Cancer Moonshot Initiative February 13th, 2017

Highly sensitive gas sensors for volatile organic compound detection February 6th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project