Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > An optical switch based on a single nano-diamond: ICFO scientists have shown that a nano-size diamond at room temperature can act as an efficient optical switch controllable with light

This shows the nanomanipulation of an artificial atom.

Credit: ICFO
This shows the nanomanipulation of an artificial atom.

Credit: ICFO

Abstract:
A recent study led by researchers of the ICFO (Institute of Photonic Sciences) demonstrates that a single nano-diamond can be operated as an ultrafast single-emitter optical switch operating at room temperature. The scientific results of this study have been published in Nature Physics.

An optical switch based on a single nano-diamond: ICFO scientists have shown that a nano-size diamond at room temperature can act as an efficient optical switch controllable with light

Barcelona, Spain | Posted on October 15th, 2013

Electronic transistors have become a key component to modern electronics, drastically improving the speed of information processing of current technologies. An electronic transistor is a semiconductor device used to amplify and switch electronic signals. The much sought after optical transistor (the photonic counterpart of the electronic transistor) is poised to become a central ingredient in the development of optical signal processing. The motivation for using photons rather than electrons not only comes from their faster dynamics but also from their weaker interaction with the environment, which enable a high degree of integration and the realization of quantum operations.

Prior studies have demonstrated that single dye molecules can be operated as optical transistors with the disadvantage that they worked exclusively at extremely low temperatures. Such restrictions on the temperature made these optical transistors cumbersome for application to quantum computing.

However in this recent ICFO study, scientists have shown that a nano-size diamond at room temperature can act as an efficient optical switch controllable with light. A Nano-diamond containing a nitrogen impurity behaves like an artificial atom although much more stable at room temperature than a real atom due to its encapsulation. The ICFO scientists discovered a novel physical mechanism that enables the control of the way the nano-diamond interacts with light. While excited to its ON state by a green laser, a suitable near infrared illumination was found to act as an efficient and fast way to switch it OFF. Based on this simple concept, they were able to modulate the optical nano-diamond ON and OFF at extremely high speeds, demonstrating its robustness and viability for very fast information processing and quantum computer operations.

Quidant remarks that "what is really attractive about our discovery is that our nano-switch combines very small dimensions (compatible with integrating a large number of them in a small area) with very fast response time (meaning lots of operations in a short time) and operation at room temperature".

This new technique will contribute to the development of future integrated optical circuits as well as quantum information processing for quantum computing.

###

This work is a collaborative effort between the research groups at ICFO led by ICREA Professors at ICFO Javier García de Abajo and Romain Quidant.

Ref: Michael Geiselmann, Renaud Marty, F. Javier García de Abajo & Romain Quidant, Fast optical modulation of the fluorescence from a single nitrogen-vacancy centre, Nature Physics (2013), doi:10.1038/nphys2770

####

About ICFO-The Institute of Photonic Sciences
ICFO-The Institute of Photonic Sciences was created in 2002 by the government of Catalonia and the Technical University of Catalonia as a center of research excellence devoted to the science and technologies of light with a triple mission: to conduct frontier research, train the next generation of scientists and technologists, and provide knowledge and technology transfer. In recognition of research excellence, ICFO was granted the Severo Ochoa accreditation by the Ministry of Science and Innovation.

Research at ICFO targets the forefront of science and technology based on light with programs directed at applications in Health, Renewable Energies, Information Technologies, Security and Industrial processes, among others. The center currently hosts 300 professionals including researchers and PhD students, working in 60 laboratories. All research groups and facilities are located in a dedicated 14.000 m2 building situated in the Mediterranean Technology Park in the metropolitan area of Barcelona.

Researchers at ICFO publish in the most prestigious journals and collaborate with a wide range of companies around the world. The Client Liaison Program at ICFO, which includes members of a large number of local and international companies, aims to create synergies between ICFO and the industrial sector. The institute actively promotes the creation of spin-off companies by ICFO researchers. The institute participates in a large number of projects and international networks of excellence. Foundation Cellex finances the NEST program at ICFO which makes possible many ambitious frontier research projects.

For more information, please click here

Contacts:
Alina Hirschmann

34-935-542-246

Copyright © ICFO-The Institute of Photonic Sciences

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Haydale Secures Exclusive Development and Supply Agreement with Tantec A/S: New reactors to be built and commissioned by Tantec A/S represent another step forward towards the commercialisation of graphene October 24th, 2014

QuantumWise guides the semiconductor industry towards the atomic scale October 24th, 2014

MEMS & Sensors Technology Showcase: Finalists Announced for MEMS Executive Congress US 2014 October 23rd, 2014

Nanoparticle technology triples the production of biogas October 23rd, 2014

Chip Technology

QuantumWise guides the semiconductor industry towards the atomic scale October 24th, 2014

Strengthening thin-film bonds with ultrafast data collection October 23rd, 2014

NIST offers electronics industry 2 ways to snoop on self-organizing molecules October 22nd, 2014

Materials for the next generation of electronics and photovoltaics: MacArthur Fellow develops new uses for carbon nanotubes October 21st, 2014

Discoveries

QuantumWise guides the semiconductor industry towards the atomic scale October 24th, 2014

Iranian, Malaysian Scientists Study Nanophotocatalysts for Water Purification October 23rd, 2014

Nanoparticle technology triples the production of biogas October 23rd, 2014

Strengthening thin-film bonds with ultrafast data collection October 23rd, 2014

Announcements

Haydale Secures Exclusive Development and Supply Agreement with Tantec A/S: New reactors to be built and commissioned by Tantec A/S represent another step forward towards the commercialisation of graphene October 24th, 2014

QuantumWise guides the semiconductor industry towards the atomic scale October 24th, 2014

Advancing thin film research with nanostructured AZO: Innovnano’s unique and cost-effective AZO sputtering targets for the production of transparent conducting oxides October 23rd, 2014

Strengthening thin-film bonds with ultrafast data collection October 23rd, 2014

Photonics/Optics/Lasers

Physicists build reversible laser tractor beam October 20th, 2014

Magnetic mirrors enable new technologies by reflecting light in uncanny ways October 16th, 2014

New VDMA Association "Electronics, Micro and Nano Technologies" founded: Inaugural Meeting in Frankfurt/Main, Germany October 15th, 2014

Nanodevices for clinical diagnostic with potential for the international market: The development is based on optical principles and provides precision and allows saving vital time for the patient October 15th, 2014

Research partnerships

NYU Researchers Break Nano Barrier to Engineer the First Protein Microfiber October 23rd, 2014

Nanoparticle technology triples the production of biogas October 23rd, 2014

RF Heating of Magnetic Nanoparticles Improves the Thawing of Cryopreserved Biomaterials October 23rd, 2014

Brookhaven Lab Launches Computational Science Initiative:Leveraging computational science expertise and investments across the Laboratory to tackle "big data" challenges October 22nd, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE