Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > ‘White graphene’ halts rust in high temps: Rice U. researchers find nano-thin films of hexagonal boron nitride protect materials from oxidizing

Rice University researchers have discovered that sheets of hexagonal boron nitride (h-BN) as little as one atom thick can protect metals in harsh environments at up to 1,100 degrees Celsius. The top image shows uncoated nickel oxidized after exposure to high temperature in an oxygen-rich environment. The second shows nickel exposed to the same conditions with a 5-nanometer coat of h-BN. The third shows electron microscope images of two, three, four and many-layer h-BN films. The bottom image of an h-BN sheet shows the hexagonal arrangement of nitrogen (bright) and boron atoms. Images by Zheng Liu
Rice University researchers have discovered that sheets of hexagonal boron nitride (h-BN) as little as one atom thick can protect metals in harsh environments at up to 1,100 degrees Celsius. The top image shows uncoated nickel oxidized after exposure to high temperature in an oxygen-rich environment. The second shows nickel exposed to the same conditions with a 5-nanometer coat of h-BN. The third shows electron microscope images of two, three, four and many-layer h-BN films. The bottom image of an h-BN sheet shows the hexagonal arrangement of nitrogen (bright) and boron atoms.

Images by Zheng Liu

Abstract:
Atomically thin sheets of hexagonal boron nitride (h-BN) have the handy benefit of protecting what's underneath from oxidizing even at very high temperatures, Rice University researchers have discovered.

‘White graphene’ halts rust in high temps: Rice U. researchers find nano-thin films of hexagonal boron nitride protect materials from oxidizing

Houston, TX | Posted on October 6th, 2013

One or several layers of the material sometimes called "white graphene" keep materials from oxidizing - or rusting — up to 1,100 degrees Celsius (2,012 degrees Fahrenheit), and can be made large enough for industrial applications, they said.

The Rice study led by materials scientists Pulickel Ajayan and Jun Lou appears in the online journal Nature Communications.

Oxidation prevention is already big business, but no products available now work on the scale of what the Rice lab is proposing. The researchers see potential for very large sheets of h-BN only a few atoms thick made by scalable vapor deposition methods.

"We think this opens up new opportunities for two-dimensional material," said Lou, an associate professor of mechanical engineering and materials science. "Everybody has been talking about these materials for electronic or photonic devices, but if this can be realized on a large scale, it's going to cover a broad spectrum of applications."

Lou said ultrathin h-BN protection might find a place in turbines, jet engines, oil exploration or underwater or other harsh environments where minimal size and weight would be an advantage, though wear and abrasion could become an issue and optimum thicknesses need to be worked out for specific applications.

It's effectively invisible as well, which may make it useful for protecting solar cells from the elements, he said. "Essentially, this can be a very useful structural material coating," Lou said.

The researchers made small sheets of h-BN via chemical vapor deposition (CVD), a process they said should be scalable for industrial production. They first grew the thin material on nickel foil and found it withstood high temperature in an oxygen-rich environment. They also grew h-BN on graphene and found they could transfer sheets of h-BN to copper and steel with similar results.

"What's amazing is that these layers are ultrathin and they stand up to such ultrahigh temperatures," Ajayan said. "At a few nanometers wide, they're a totally non-invasive coating. They take almost no space at all."

Lead authors are Rice postdoctoral researcher Zheng Liu and graduate student Yongji Gong. Co-authors are Rice graduate student Lulu Ma and Senior Faculty Fellow Robert Vajtai; Wu Zhou, a Wigner Fellow, and Juan Carlos Idrobo, a staff scientist at Oak Ridge National Laboratory; Jingjiang Yu of Agilent Technologies; Jeil Jung, a research fellow at the National University of Singapore and a postdoctoral researcher at the University of Texas at Austin; and Allan MacDonald, the Sid W. Richardson Foundation Regents Chair Professor at the University of Texas at Austin. Ajayan is the Benjamin M. and Mary Greenwood Anderson Professor in Mechanical Engineering and Materials Science and of chemistry at Rice.

The Army Research Office, the Office of Naval Research, the Welch Foundation, the Korean Institute of Machinery and Materials, the National Science Foundation, Oak Ridge National Laboratory and the Department of Energy supported the research.

####

For more information, please click here

Contacts:
Mike Williams
senior media relations specialist
713-348-6728

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Graphene

Light pulses control graphene's electrical behavior: Finding could allow ultrafast switching of conduction, and possibly lead to new broadband light sensors August 1st, 2014

Pressure probing potential photoelectronic manufacturing compound July 31st, 2014

FLAG-ERA and TNT2014 join efforts: Graphene Networking at its higher level in Barcelona: Encourage the participation in a joint transnational call July 30th, 2014

Tough foam from tiny sheets: Rice University lab uses atom-thick materials to make ultralight foam July 29th, 2014

News and information

Light pulses control graphene's electrical behavior: Finding could allow ultrafast switching of conduction, and possibly lead to new broadband light sensors August 1st, 2014

President Obama Meets U.S. Laureates of 2014 Kavli Prizes August 1st, 2014

Stanford researchers seek 'Holy Grail' in battery design: Pure lithium anode closer to reality with development of protective layer of interconnected carbon domes August 1st, 2014

Air Force’s 30-year plan seeks 'strategic agility' August 1st, 2014

Laboratories

Nanostructured metal-oxide catalyst efficiently converts CO2 to methanol: Highly reactive sites at interface of 2 nanoscale components could help overcome hurdle of using CO2 as a starting point in producing useful products July 31st, 2014

Govt.-Legislation/Regulation/Funding/Policy

Light pulses control graphene's electrical behavior: Finding could allow ultrafast switching of conduction, and possibly lead to new broadband light sensors August 1st, 2014

President Obama Meets U.S. Laureates of 2014 Kavli Prizes August 1st, 2014

Stanford researchers seek 'Holy Grail' in battery design: Pure lithium anode closer to reality with development of protective layer of interconnected carbon domes August 1st, 2014

Air Force’s 30-year plan seeks 'strategic agility' August 1st, 2014

Discoveries

Iranian Scientists Produce Cobalt–Alumina Ceramic Nano Inks August 1st, 2014

Light pulses control graphene's electrical behavior: Finding could allow ultrafast switching of conduction, and possibly lead to new broadband light sensors August 1st, 2014

Taking the guesswork out of cancer therapy: New molecular test kit predicts patient’s survival and drug response August 1st, 2014

Carnegie Mellon Chemists Create Nanofibers Using Unprecedented New Method July 31st, 2014

Materials/Metamaterials

International Conference in Nanomaterials and Technologies CNT 2014 August 1st, 2014

Light pulses control graphene's electrical behavior: Finding could allow ultrafast switching of conduction, and possibly lead to new broadband light sensors August 1st, 2014

Industrial Nanotech, Inc. to Publish PCAOB Audited Financials July 31st, 2014

Carnegie Mellon Chemists Create Nanofibers Using Unprecedented New Method July 31st, 2014

Announcements

Light pulses control graphene's electrical behavior: Finding could allow ultrafast switching of conduction, and possibly lead to new broadband light sensors August 1st, 2014

President Obama Meets U.S. Laureates of 2014 Kavli Prizes August 1st, 2014

Stanford researchers seek 'Holy Grail' in battery design: Pure lithium anode closer to reality with development of protective layer of interconnected carbon domes August 1st, 2014

Air Force’s 30-year plan seeks 'strategic agility' August 1st, 2014

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals

Iranian Scientists Produce Cobalt–Alumina Ceramic Nano Inks August 1st, 2014

Light pulses control graphene's electrical behavior: Finding could allow ultrafast switching of conduction, and possibly lead to new broadband light sensors August 1st, 2014

Stanford researchers seek 'Holy Grail' in battery design: Pure lithium anode closer to reality with development of protective layer of interconnected carbon domes August 1st, 2014

Taking the guesswork out of cancer therapy: New molecular test kit predicts patient’s survival and drug response August 1st, 2014

Military

Air Force’s 30-year plan seeks 'strategic agility' August 1st, 2014

Pressure probing potential photoelectronic manufacturing compound July 31st, 2014

New imaging agent provides better picture of the gut July 30th, 2014

Watching Schrödinger's cat die (or come to life): Steering quantum evolution & using probes to conduct continuous error correction in quantum computers July 30th, 2014

Aerospace/Space

National Space Society Calls For Less US Dependence On Russian Space Technology July 15th, 2014

Motorized Miniature Screw-Actuator Provides 20 nm Resolution, Based on Piezo Effect July 8th, 2014

NSS Pays Tribute to Space Pioneer Frederick I. Ordway III July 7th, 2014

Up in Flames: Evidence Confirms Combustion Theory: Berkeley Lab and University of Hawaii research outlines the story of soot, with implications for cleaner-burning fuels July 1st, 2014

Industrial

Nanostructured metal-oxide catalyst efficiently converts CO2 to methanol: Highly reactive sites at interface of 2 nanoscale components could help overcome hurdle of using CO2 as a starting point in producing useful products July 31st, 2014

University of Manchester selects Anasys AFM-IR for coatings and corrosion research July 30th, 2014

FEI Unveils New Solutions for Faster Time-to-Analysis in Metals Research July 30th, 2014

Iranian Scientists Produce Transparent Nanocomposite Coatings with Longer Lifetime July 24th, 2014

Photonics/Optics/Lasers

Light pulses control graphene's electrical behavior: Finding could allow ultrafast switching of conduction, and possibly lead to new broadband light sensors August 1st, 2014

Pressure probing potential photoelectronic manufacturing compound July 31st, 2014

From Narrow to Broad July 30th, 2014

Terabyte Photonic Dataset Sale July 30th, 2014

Research partnerships

Study finds physical link to strange electronic behavior: Neutron measurements offer new clues about iron-based superconductor July 31st, 2014

Carnegie Mellon Chemists Create Nanofibers Using Unprecedented New Method July 31st, 2014

New imaging agent provides better picture of the gut July 30th, 2014

Breakthrough laser experiment reveals liquid-like motion of atoms in an ultra-cold cluster: University of Leicester research team unlocks insights into creation of new nano-materials July 25th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE